Answer:
A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.
Explanation:
Answer:
The conversion in the real reactor is = 88%
Explanation:
conversion = 98% = 0.98
process rate = 0.03 m^3/s
length of reactor = 3 m
cross sectional area of reactor = 25 dm^2
pulse tracer test results on the reactor :
mean residence time ( tm) = 10 s and variance (∝2) = 65 s^2
note: space time (t) =
t =
Vo = flow metric flow rate , L = length of reactor , A = cross sectional area of the reactor
therefore (t) =
= 25 s
since the reaction is in first order
X = 1 - 
= 1 - X
kt = In 
k = In
/ t
X = 98% = 0.98 (conversion in PFR ) insert the value into the above equation then
K = 0.156 
Calculating Da for a closed vessel
; Da = tk
= 25 * 0.156 = 3.9
calculate Peclet number Per using this equation
0.65 = 
therefore

solving the Non-linear equation above( Per = 1.5 )
Attached is the Remaining part of the solution
By being attentive in classes, taking good notes and making sure to put time fourth into your grades.
Answer:
a). TRUE
Explanation:
Thermal efficiency of a system is the defined as the ratio of the net work done to the total heat input to the system. It is a dimensionless quantity.
Mathematically, thermal efficiency is
η = net work done / heat input
While heat rate is the reciprocal of efficiency. It is defined as the ratio of heat supplied to the system to the useful work done.
Mathematically, heat rate is
Heat rate = heat input / net work done
Thus from above we can see that heat rate is the reciprocal of thermal efficiency.
Thus, Heat rate is reciprocal of thermal efficiency.