Answer:
hellooooo :) ur ans is 33.5 m/s
At time t, the displacement is h/2:
Δy = v₀ t + ½ at²
h/2 = 0 + ½ gt²
h = gt²
At time t+1, the displacement is h.
Δy = v₀ t + ½ at²
h = 0 + ½ g (t + 1)²
h = ½ g (t + 1)²
Set equal and solve for t:
gt² = ½ g (t + 1)²
2t² = (t + 1)²
2t² = t² + 2t + 1
t² − 2t = 1
t² − 2t + 1 = 2
(t − 1)² = 2
t − 1 = ±√2
t = 1 ± √2
Since t > 0, t = 1 + √2. So t+1 = 2 + √2.
At that time, the speed is:
v = at + v₀
v = g (2 + √2) + 0
v = g (2 + √2)
If g = 9.8 m/s², v = 33.5 m/s.
The circumference of a circle is (2π · the circle's radius).
The length of a semi-circle is (1π · the circle's radius) =
(π · 14.8) = 46.5 (rounded)
(The unit is the same as whatever the unit of the 14.8 is.)
Answer:
Explanation:
The equation for this, since we are talking about weight on an elevator, is Newton's 2nd Law adjusted to fit our needs:
where the Normal Force needed to lift that elevator car is the tension. So the equation then becomes
T = ma + w where T is the tension in the cable to lift the elevator, m is the mass of the elevator (which we have to solve for), a is the acceleration of the elevator (positive since it's going up), and w is the weight of the elevator (which we have as 5500 N). Solving first for mass:
w = mg and
5500 =- m(10) so
m = 550 kg. Now we have what we need to solve for the tension:
T = 550(4.0) + 5500 and
T = 2200 + 5500 so
T = 7700 N
Answer:
Option C. 30 m
Explanation:
From the graph given in the question above,
At t = 1 s,
The displacement of the car is 10 m
At t = 4 s
The displacement of the car is 40 m
Thus, we can simply calculate the displacement of the car between t = 1 and t = 4 by calculating the difference in the displacement at the various time. This is illustrated below:
Displacement at t = 1 s (d1) = 10 m
Displacement at t= 4 s (d2) = 40
Displacement between t = 1 and t = 4 (ΔD) =?
ΔD = d2 – d1
ΔD = 40 – 10
ΔD = 30 m.
Therefore, the displacement of the car between t = 1 and t = 4 is 30 m.
A force is a push or pull upon an object resulting from the object's interaction with another object.