According to Gauss' law, the electric field outside a spherical surface uniformly charged is equal to the electric field if the whole charge were concentrated at the center of the sphere.
Therefore, when you are outside two spheres, the electric field will be the overlapping of the two electric fields:
E(r > r₂ > r₁) = k · q₁/r² + k · q₂/r² = k · (q₁ + q₂) / r²
where:
k = 9×10⁹ N·m²/C²
We have to transform our data into the correct units of measurement:
q₁ = 8.0 pC = 8.0×10⁻¹² C
q₂ = 3.0 pC = 3.0×10<span>⁻¹² C
</span><span>r = 5.0 cm = 0.05 m
Now, we can apply the formula:
</span><span>E(r) = k · (q₁ + q₂) / r²
= </span>9×10⁹ · (8.0×10⁻¹² + 3.0×10⁻¹²) / (0.05)²
= 39.6 N/C
Hence, <span>the magnitude of the electric field 5.0 cm from the center of the two surfaces is E = 39.6 N/C</span>
I’m not sure sorry I really wish I could help
The mass can be calculated by dividing the net force acting on an object by the acceleration of the object. When talking about net force, we use the units kilogram meter per second squared. This is also known as a Newton. The units for acceleration is meters per seconds squared, and the units for mass are kilograms.
The unit for work J can also be written as Nm. Therefore, it is a derived unit as different SI units are needed to obtain its value. In this case, its derived from force and distance.