1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hoochie [10]
3 years ago
13

Which of the following non-metals is used as a lubricant in powdered form?

Physics
1 answer:
blondinia [14]3 years ago
5 0

Answer:

Graphite.

Explanation:

Graphite:<em> "a gray crystalline allotropic form of carbon which occurs as a mineral in some rocks and can be made from coke. It is used as a solid lubricant, in pencils, and as a moderator in nuclear reactors."</em>

You might be interested in
When analyzing a position time graph the direction of the slope positive or negative tells us:
Sphinxa [80]

Answer:

Explanation:

Positive values for position indicate that the object is in front of the starting point and negative values tell us that the object is behind the starting point. (time = 9.5, position = 0) the object is at the starting point.

8 0
3 years ago
Read 2 more answers
Which has more thermal energy: lake or a cup of hot chocolate?
lawyer [7]
Though the hot cocoa would have a higher temperature, the lake would have more thermal energy because it has more molecules with a greater total internal energy.
4 0
3 years ago
Calculate the acceleration of gravity as a function of depth in the earth (assume it is a sphere). You may use an average densit
Ber [7]

Solution :

Acceleration due to gravity of the earth, g $=\frac{GM}{R^2}$

$g=\frac{G(4/3 \pi R^2 \rho)}{R^2}=G(4/3 \pi R \rho)$

Acceleration due to gravity at 1000 km depths is :

$g=G\left(\frac{4}{3}\pi (R-d) \rho\right)$

$g=6.67 \times 10^{-11}\left(\frac{4}{3}\times 3.14 \times (6371-1000) \times 5.5 \times 10^3\right)$

  $= 822486 \times 10^{-8}$

  $=0.822 \times 10^{-2} \ km/s$

 = 8.23 m/s

Acceleration due to gravity at 2000 km depths is :

$g=G\left(\frac{4}{3}\pi (R-d) \rho\right)$

$g=6.67 \times 10^{-11}\left(\frac{4}{3}\times 3.14 \times (6371-2000) \times 5.5 \times 10^3\right)$

  $= 673552 \times 10^{-8}$

  $=0.673 \times 10^{-2} \ km/s$

 = 6.73 m/s

Acceleration due to gravity at 3000 km depths is :

$g=G\left(\frac{4}{3}\pi (R-d) \rho\right)$

$g=6.67 \times 10^{-11}\left(\frac{4}{3}\times 3.14 \times (6371-3000) \times 5.5 \times 10^3\right)$

  $= 3371 \times 153.86 \times 10^{-8}$

  = 5.18 m/s

Acceleration due to gravity at 4000 km depths is :

$g=G\left(\frac{4}{3}\pi (R-d) \rho\right)$

$g=6.67 \times 10^{-11}\left(\frac{4}{3}\times 3.14 \times (6371-4000) \times 5.5 \times 10^3\right)$

  $= 153.84 \times 2371 \times 10^{-8}$

  $=0.364 \times 10^{-2} \ km/s$

 = 3.64 m/s

       

3 0
3 years ago
A sample of a gas in a rigid container has an initial pressure of 5 atm at a temperature of 254.5 k. The temperature is decrease
skelet666 [1.2K]

The gas is in a rigid container: this means that its volume remains constant. Therefore, we can use Gay-Lussac law, which states that for a gas at constant volume, the pressure is directly proportional to the temperature. The law can be written as follows:

\frac{P_1}{T_1} = \frac{P_2}{T_2}

Where P1=5 atm is the initial pressure, T1=254.5 K is the initial temperature, P2 is the new pressure and T2=101.8 K is the new temperature. Re-arranging the equation and using the data of the problem, we can find P2:

P_2 = T_2 \frac{P_1}{T_1}=(101.8 K) \frac{5 atm}{254.5 K}=2 atm

So, the new pressure is 2 atm.

7 0
3 years ago
A hydrogen atom in a galaxy moving with a speed of 6.65×106 m/???? away from the Earth emits light with a wavelength of 5.13×10−
Mumz [18]

Answer:

The observed wavelength on Earth from that hydrogen atom is 5.24\times 10^{-7}\ m.

Explanation:

Given that,

The actual wavelength of the hydrogen atom, \lambda_a=5.13\times 10^{-7}\ m

A hydrogen atom in a galaxy moving with a speed of, v=6.65\times 10^6\ m/s

We need to find the observed wavelength on Earth from that hydrogen atom. The speed of galaxy is given by :

v=c\times \dfrac{\lambda_o-\lambda_a}{\lambda_a}

\lambda_o is the observed wavelength

\lambda_o=\dfrac{v\lambda_a}{c}+\lambda_a\\\\\lambda_o=\dfrac{6.65\times 10^6\times 5.13\times 10^{-7}}{3\times 10^8}+5.13\times 10^{-7}\\\\\lambda_o=5.24\times 10^{-7}\ m

So, the observed wavelength on Earth from that hydrogen atom is 5.24\times 10^{-7}\ m. Hence, this is the required solution.

8 0
3 years ago
Other questions:
  • How much current is flowing in a wire 4.40 mm long if the maximum force on it is 0.575 NN when placed in a uniform 0.0550-TT fie
    14·1 answer
  • Two resistors, R1=2.79 Ω and R2=6.37 Ω , are connected in series to a battery with an EMF of 24.0 V and negligible internal resi
    7·1 answer
  • 1. Physics is the study of_
    11·1 answer
  • Two cars are traveling at the same speed of 27 m/s on a curve thathas a radius of 120 m. Car A has a mass of 1100 kg and car B h
    8·1 answer
  • A long straight wire carries a current of 51.7 A. An electron, traveling at 7.43 × 10^7 m/s, is 5.76 cm from the wire.
    8·1 answer
  • What is your worldview? Explain?
    9·1 answer
  • A person weighs 60 kg. The area under the foot of the person is 150 cm2. Find the pressure exerted on the ground by the person.
    8·1 answer
  • If the sound source is moving then the pitch of the sound will ___________________ to the observer.
    10·1 answer
  • Please help! 50 points and brainliest to first correct answer!
    11·2 answers
  • What is the advantage of having two eyes instead of one eye in humans?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!