Answer:
a) α = 0.338 rad / s² b) θ = 21.9 rev
Explanation:
a) To solve this exercise we will use Newton's second law for rotational movement, that is, torque
τ = I α
fr r = I α
Now we write the translational Newton equation in the radial direction
N- F = 0
N = F
The friction force equation is
fr = μ N
fr = μ F
The moment of inertia of a saying is
I = ½ m r²
Let's replace in the torque equation
(μ F) r = (½ m r²) α
α = 2 μ F / (m r)
α = 2 0.2 24 / (86 0.33)
α = 0.338 rad / s²
b) let's use the relationship of rotational kinematics
w² = w₀² - 2 α θ
0 = w₀² - 2 α θ
θ = w₀² / 2 α
Let's reduce the angular velocity
w₀ = 92 rpm (2π rad / 1 rev) (1 min / 60s) = 9.634 rad / s
θ = 9.634 2 / (2 0.338)
θ = 137.3 rad
Let's reduce radians to revolutions
θ = 137.3 rad (1 rev / 2π rad)
θ = 21.9 rev
Answer:
Kinetic Energy
Explanation:
Heat energy is another name for thermal energy. Kinetic energy is the energy of a moving object. As thermal energy comes from moving particles, it is a form of kinetic energy.
Answer:
sliding , static , rolling
Explanation:
HOPE IT WILL HELP YOU
Einstein's special theory of relativity explains that the electric and magnetic fields are both can formulate together in mathematically.
It is given Einstein's special theory of relativity.
It is find the Einstein's special theory of relativity explains the perpendicular behavior of moving charges without recourse to invoking the concept of a magnetic field.
<h2>What is Einstein's special theory of
relativity?</h2>
As we know that one charge creates a field and its that field that actually exerts a force on the other charge. Here we it gives the relationship of two fields like electric field and magnetic field and gives the formula for electromagnetic objects.
Special relativity fixes the problem by the points that the magnetic force in one frame of reference easily be an electric force in other and also some of the combination of them in a frame.
Thus, Einstein's special theory of relativity explains that the electric and magnetic fields are both can formulae together in mathematically.
Learn more about magnetic field here:
brainly.com/question/23096032
#SPJ4
What happens when the light hits the glass depends on what it was in before it hit the glass.
WHILE it's in the glass, the speed of light doesn't change.