Answer: The concentration of
ions in the resulting solution is 1.16 M.
Explanation:
To calculate the molarity of the solution after mixing 2 solutions, we use the equation:

where,
are the n-factor, molarity and volume of the 
are the n-factor, molarity and volume of the 
We are given:
Putting all the values in above equation, we get

The concentration of
ions in the resulting solution will be same as the molarity of solution which is 1.16 M.
Hence, the concentration of
ions in the resulting solution is 1.16 M.
A Thermochemical Equation is a balanced stoichiometric chemical equation that includes the enthalpy change, ΔH. In variable form, a thermochemical equation would look like this:
A + B → CΔH = (±) #
Where {A, B, C} are the usual agents of a chemical equation with coefficients and “(±) #” is a positive or negative numerical value, usually with units of kJ.
please mark as brainliest
The answer is baking a cake.
Answer:
Endothermic hope that helps
Explanation:
The mass of water produced by the reaction of the 23 g of
is 13.8 g.
The given chemical reaction;

In the given compound above, we can deduce the following;
- molecular mass of
= 28 + (2 x 16) = 60 g - molecular mass of
= 2(18) = 36 g
60 g of
--------- 36 g of water
23 g of
------------- ? of water

Thus, the mass of water produced by the reaction of the 23 g of
is 13.8 g.
- <em>"Your question is not complete, it seems to be missing the following information";</em>
In the reaction of the given compound,
, what mass of water (in grams) is produced by the reaction of 23.0 g of SiO2?
Learn more here:brainly.com/question/13644576