Acceleration is the rate at which an object changes its velocity. It defines how much the velocity is changing. The acceleration can be negative and positive. Negative acceleration is when the object slows down, while positive while the object goes faster.
<span>A ball moving at a constant speed around a circular track produces acceleration. </span>
Answer:
No. of Neutrons = 3
Explanation:
The atomic number of Lithium is given as 3 in the symbol while the mass number is given as 5.941 which is approximately equal to 6.
Mass Number = No. of Protons + No. of Neutrons = 6
Atomic Number = Number of Electrons = No. of Protons = 3
Therefore,
Mass Number - Atomic Number = (No. of Protons + No. of Neutrons) - No. of Protons
Mass Number - Atomic Number = No. of Neutrons
No. of Neutrons = 6 - 3
<u>No. of Neutrons = 3 </u>
Potential Energy (Initial one) = m * g * h
P.E. = 60 * 9.8 * 10
P.E. = 5880
Kinetic Energy (Final One) = 1/2 mv²
K.E. = 1/2 * 60 * (10)²
K.E. = 6000/2
K.E. = 3000
Lost Energy = 5880 - 3000 = 2880 J
In short, Your Answer would be 2880 Joules
Hope this helps!
Answer:
We can retain the original diffraction pattern if we change the slit width to d) 2d.
Explanation:
The diffraction pattern of a single slit has a bright central maximum and dimmer maxima on either side. We will retain the original diffraction pattern on a screen if the relative spacing of the minimum or maximum of intensity remains the same when changing the wavelength and the slit width simultaneously.
Using the following parameters: <em>y</em> for the distance from the center of the bright maximum to a place of minimum intensity, <em>m</em> for the order of the minimum, <em>λ </em>for the wavelength, <em>D </em>for the distance from the slit to the screen where we see the pattern and <em>d </em>for the slit width. The distance from the center to a minimum of intensity can be calculated with:

From the above expression we see that if we replace the blue light of wavelength λ by red light of wavelength 2λ in order to retain the original diffraction pattern we need to change the slit width to 2d:
<em> </em>
Answer: 815.51 m
Explanation:
This situation is related to projectile motion or parabolic motion, in which the initial velocity of the bullet has only y-component, since it was fired straight up. In addition, we are dealing with constant acceleration (due gravity), therefore the following equations will be useful to solve this problem:
(1)
(2)
Where:
is the final velocity of the bullet
is the initial velocity of the bullet
is the acceleration due gravity, always directed downwards
is the time
is the vertical position of the bullet at 
Let's begin by finding
from (1):
(3)
(4)
Now we have to substitute (4) in (2):
(5)
Isolating
:
This is the displacement of the bullet after 6.9 s