The answer for this question, If I am correct, should be answer "D".
Answer:
0.86 m
Explanation:
q₁ = magnitude of positive charge = 5 x 10⁻⁶ C
q₂ = magnitude of negative charge = 3 x 10⁻⁶ C
r = distance between the two charges = 0.250 m
d = distance of the location of third charge from negative charge
q = magnitude of charge on third charge
Using equilibrium of electric force on third charge



d = 0.86 m
Answer:
λ = 1.86 x 10⁻⁴ m = 186 μm
Explanation:
The relationship between the wavelength and the frequency of a wave is given by the following equation:

where,
λ = wavelength of infrared radiation = ?
c = speed of infrared radiation = speed of light = 3 x 10⁸ m/s
f = frequency of infrared radiation = 1.61 THz = 1.61 x 10¹² Hz
Therefore,

<u>λ = 1.86 x 10⁻⁴ m = 186 μm</u>
The definition of average acceleration allows to find the result for the average acceleration in the given time interval is:
Instantaneous acceleration is defined as the derivative of velocity with respect to time.
a =
Where a is the acceleration, v the velocity and t the time.
They indicate that the speed of the car is given by the relation.
v = α t + β t²
With α = 3 m / s and β = 0.1 m / s³
Let's make the derivative.
a = α + 2β t
Let's substitute
a = 3 + 2 0.1 t
Average acceleration is the change in velocity in the time interval.
Let's find the velocity at the indicated time.
For t = 5 s
v₅ = 3 + 0.1 5²
v₅ = 5.5 m / s
For t = 10 s
v₁₀ = 3 + 0.1 10²
v₁₀ = 13 m / s
Let's calculate the average acceleration.
In conclusion using the definition of mean acceleration we can find the result for the mean acceleration in the given time interval is:
1.5 m / s²
Learn more here: brainly.com/question/20057878
Answer:
a) (-367231.63i , 367231.63i, 0) N/C
b) (0 , 0 , 367231.63i ) N/C
Explanation:
a)
Case x < -2.15

Case x > 2.15

Case -2.15 < x <+2.15

b)
Case x < -2.15

Case x > 2.15

Case -2.15 < x <+2.15
