Answer:
alternating mountain ranges and valley.
Hope u find this helpful
Considering the deuterium-tritium fusion reaction with the tritium nucleus at rest: ¹₂H + ¹₃H → ²₄He + ⁰₁n the electric potential energy (in electron volts) at this distance is 17.58MeV
<h3>How is the electric potential energy of deuterium-tritium fusion reaction calculated?</h3>
The reaction is ¹₂H + 1₃H → ²₄He + ⁰₁n
Value of Q = (Mass of ¹₂H + Mass of ¹₃H - Mass of ²₄He- Mass of n) x 931 MeV
Mass of ¹₂H = 2.014102
Mass of ¹₃H = 3.016049
Mass of ²₄He = 4.002603
Mass of n = 1.00867
Therefore Value of Q = [2.014102+3.016049−4.002603−1.00867] × 931 MeV
Therefore Value of Q = 0.01887 × 931 MeV
= 17.58MeV
To learn more about deuterium-tritium fusion reaction, refer
brainly.com/question/9054784
#SPJ4
Answer:
E_total = 1.30 10¹⁰ C / m²
Explanation:
The intensity of the electric field is
E = k q / r²
on a positive charge proof
The total electric field at the midpoint is
as q₁= 6 10⁻⁶ C the field is outgoing to the right
for charge q₂ = -3 10⁻⁶ C, the field is directed to the right, therefore
E_total = E₁ + E₂
E_total = k q₁ / r₁² + k q₂ / r₂²
r₁ = r₂ = r = 4 10⁻² m
E_total = k/r² (q₁ + q₂)
we calculate
E_total = 9 10⁹ / (4 10⁻²)² (6.0 10⁻⁶ +3.0 10⁻⁶)
E_total = 1.30 10¹⁰ C / m²
FVJDJFN.s<ldF KN,M c":F,BJ TNHIJRT IHJYODIFG