The period of the wave is the reciprocal of its frequency.
1 / (5 per second) = 0.2 second .
The wavelength is irrelevant to the period. But since you
gave it to us, we can also calculate the speed of the wave.
Wave speed = (frequency) x (wavelength)
= (5 per second) x (1cm) = 5 cm per second
Answer:
Yes, it is reasonable to neglect it.
Explanation:
Hello,
In this case, a single molecule of oxygen weights 32 g (diatomic oxygen) thus, the mass of kilograms is (consider Avogadro's number):

After that, we compute the potential energy 1.00 m above the reference point:

Then, we compute the average kinetic energy at the specified temperature:

Whereas
stands for the Avogadro's number for which we have:

In such a way, since the average kinetic energy energy is about 12000 times higher than the potential energy, it turns out reasonable to neglect the potential energy.
Regards.
Explanation:
To find the average of these numbers, we just have to add the three numbers together and divide by 3.
- 2.07 + 0. 74 + 1.33 = 4.14. 4.14 / 3 = 1.38
- 1.09 + 1.40 + 0.31 = 2.8. 2.8 / 3 ≈ 9.3333333/ 9 1/3
- 0.95 + 1.61 + 0.56 = 3.12 / 3 = 1.04
- 0.81 + 1.89 + 1.08 = 3.78 / 3 = 1.26
Ricks velocity would be zooomin out because it would fall off so strongly so it’d change and it’s weight too