solution:
E\delta =\frac{R}{\epsilon0}(1-\frac{A}{\sqrt{4R^{2}}-ac}
=\frac{R}{\epsilon0}(1-\frac{1}{\sqrt{4r^{2}/^{_a{2}}+1}})
=\frac{R}{\epsilon0}(1-\frac{1}{\sqrt{4x^2+1}})
x=\frac{r}{a}
infinite case,
Ei=\frac{r}{\epsilon0}
\therefore e\delta =ei(1-\frac{1}{\sqrt{4x^{2}+1}})
we have to find x when,
ei-e\delta =1% ,y=ei=1/100 ei
or,ei-ei+\frac{ei}{\sqrt{4x^2+1}} = 1/100ei
\frac{1}{\sqrt{4x^2+1}}=\frac{1}{100}
4x^2+1 =10^4
x=\frac{\sqrt{\frac{10^4-1}{4}}}=49.99\approx 50
\therefore \frac{r}{a}\approx 50
Answer:
d = 90 ft
Explanation:
As we know that after each bounce it reaches to 4/5 times of initial height
so we can say

so the distance covered is given as

here we know that
h = 10 feet



The simplest compound of hydrocarbon is methane
- The formula is CH_4
- It belongs to alkane group and has single bonds.
The electron structure attached
Answer:
A plane mirror is a mirror with a flat (planar) reflective surface. For light rays striking a plane mirror, the angle of reflection equals the angle of incidence. The angle of the incidence is the angle between the incident ray and the surface normal (an imaginary line perpendicular to the surface).