Answer:
% comp. H = 2.8%, % comp. Cl = 97.2%
Explanation:
HCl mass = mass of H + mass of Cl
HCL mass = 1.00794 + 35.453 = 36.46094
% comp. of H = 1.007694 / 36.46094 x 100 = around 2.8% (2.76376308455)
% comp. of Cl = 35.453 / 36.46094 x 100 = around 97.2% (97.2355622208)
Answer:
2 Cr(s) + 3 Fe(NO3)2(aq) = 3 Fe(s) + 2 Cr(NO3)3(aq)
Explanation:
I balanced this chemical equation so that both sides are equal, meaning that the mass of reactants is equal to mass of products.
I believe the answer you are looking for is Static Friction. Static Friction is the force that holds an object in place until it starts to move. Then it switches to rolling friction.
For example, if you have a 1/2 ton truck sitting in front of you and the truck is in neutral. (meaning it can roll if pushed). The truck is extremely hard to move at first. That is because static friction is holding it in place until the amount of force exceeds the limit of static friction.
So if we continue to push at the truck and you feel it starting to move, then once it starts moving it is much easier to push, that is because we moved past static friction to rolling friction. Rolling friction is what helps slow things down. If you roll a ball across a carpet floor it eventually comes to a stop.
In order to measure 0.733 moles of KBr from a 3.00 M solution, the chemist needs 244 mL of solution.
<h3>What is molarity?</h3>
Molarity (M) is a unit of concentration of solutions, and it is defined as the moles of a solute per liters of a solution.
- Step 1: Calculate the liters of solution required.
A chemist has a 3.00 M KBr solution and wants to measure 0.733 moles of KBr. The required volume is:
0.733 mol × (1 L/3.00 mol) = 0.244 L
- Step 2: Convert 0.244 L to mL.
We will use the conversion factor 1 L = 1000 mL.
0.244 L × (1000 mL/1 L) = 244 mL
In order to measure 0.733 moles of KBr from a 3.00 M solution, the chemist needs 244 mL of solution.
Learn more about molarity here: brainly.com/question/9118107
Answer:
The new volume of the balloon will be 6046.28 L
Explanation:
Initial pressure (P1) = 99 kpa
initial volume (V1) = 3000 L
Initial temperature = 39 C = 39 + 273 = 312 K
Final pressure (P2) = 45.5 kpa
Final temperature = 16 C = 16 +273 = 289K
Final volume = ????
To calculate the final volume using the general gas equation
P1 V1 / T1 = P2 V2 / T2
make V2 the subject of the formular
V2 = 99000 ×3000× 289 / 45500×312
V2 = 85833000 /14196
V2 = 6046.28 litres