Answer:
Maximum Tension=224N
Minimum tension= 64N
Explanation:
Given
mass =8 kg
constant speed = 6m/s .
g=10m/s^2
Maximum Tension= [(mv^2/ r) + (mg)]
Minimum tension= [(mv^2/ r) - (mg)]
Then substitute the values,
Maximum Tension= [8 × 6^2)/2 +(8×9.8)] = 224N
Minimum tension= [8 × 6^2)/2 -(8×9.8)]
=64N
Hence, Minimum tension and maximum Tension are =64N and 2224N respectively
Answer:
Explanation:
Given that
F=2x³
Work is given as
The range of x is from x=0 to x=D
W=-∫f(x)dx
Then,
W=-∫2x³dx from x=0 to x=D
W=- 2x⁴/4 from x=0 to x=D
W=-2(D⁴/4-0/4)
W=-D⁴/2
W=1/2D⁴
The correct answer is F
Answer: The changing magnetic field caused by the material's motion induces a current in the coil of wire proportional to the change in field. If a 0 is represented, the magnetic field does not change between the two domains of a bit, so no current is induced as the magnetic material passes the coil.
B Because I am I really really really really really….. be it is B i am latina
Let M = mass of the skier,
v2 = his speed at the end of the track.
By conservation of energy,
1/2 Mv^2 = 1/2 Mv2^2 + Mgh
Dividing by M,
1/2 v^2 = 1/2 v2^2 + gh
Multiplying by 2,
v^2 = v2^2 + 2gh
Or v2^2 = v^2 - 2gh
Or v2^2 = 4.8^2 - 2 * 9.8 * 0.46
Or v2^2 = 23.04 - 9.016
Or v2^2 = 14.024 m^2/s^2-----------------------------(1)
In projectile motion, launch speed = v2
and launch angle theta = 48 deg
Maximum height
H = v2^2 sin^2(theta)/(2g)
Substituting theta = 48 deg and value of v2^2 from (1),
H = 14.024 * sin^2(48 deg)/(2 * 9.8)
Or H = 14.024 * 0.7431^2/19.6
Or H = 14.024 * 0.5523/19.6
Or H = 0.395 m = 0.4 m after rounding off
Ans: 0.4 m
The answer in this question is 0.4 m