1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rzqust [24]
3 years ago
14

What is the value of the work interaction in this process?

Engineering
1 answer:
Cloud [144]3 years ago
7 0

Answer:

The answer is "-121\  \frac{KJ}{Kg}".

Explanation:

Please find the correct question in the attachment file.

using formula:

\to W=-P_1V_1+P_2V_2 \\\\When \\\\\to W= \frac{P_1V_1-P_2V_2}{n-1}\ \   or \ \  \frac{RT_1 -RT_2}{n-1}\\\\

W =\frac{R(T_1 -T_2)}{n-1}\\\\

    =\frac{0.287(25 -237)}{1.5-1}\\\\=\frac{0.287(-212)}{0.5}\\\\=\frac{-60.844}{0.5}\\\\=-121.688 \frac{KJ}{Kg}\\\\=-121 \frac{KJ}{Kg}\\\\

You might be interested in
Air exits a compressor operating at steady-state, steady-flow conditions at 150 oC, 825 kPa, with a velocity of 10 m/s through a
ioda

Answer:

a) Qe = 0.01963 m^3 / s , mass flow rate m^ = 0.1334 kg/s

b) Inlet cross sectional area = Ai = 0.11217 m^2 , Qi = 0.11217 m^3 / s    

Explanation:

Given:-

- The compressor exit conditions are given as follows:

                  Pressure ( Pe ) = 825 KPa

                  Temperature ( Te ) = 150°C

                  Velocity ( Ve ) = 10 m/s

                  Diameter ( de ) = 5.0 cm

Solution:-

- Define inlet parameters:

                  Pressure = Pi = 100 KPa

                  Temperature = Ti = 20.0

                  Velocity = Vi = 1.0 m/s

                  Area = Ai

- From definition the volumetric flow rate at outlet ( Qe ) is determined by the following equation:

                   Qe = Ae*Ve

Where,

           Ae: The exit cross sectional area

                   Ae = π*de^2 / 4

Therefore,

                  Qe = Ve*π*de^2 / 4

                  Qe = 10*π*0.05^2 / 4

                  Qe = 0.01963 m^3 / s

 

- To determine the mass flow rate ( m^ ) through the compressor we need to determine the density of air at exit using exit conditions.

- We will assume air to be an ideal gas. Thus using the ideal gas state equation we have:

                   Pe / ρe = R*Te  

Where,

           Te: The absolute temperature at exit

           ρe: The density of air at exit

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρe = Pe / (R*Te)

                ρe = 825 / (0.287*( 273 + 150 ) )

                ρe = 6.79566 kg/m^3

- The mass flow rate ( m^ ) is given:

               m^ = ρe*Qe

                     = ( 6.79566 )*( 0.01963 )

                     = 0.1334 kg/s

- We will use the "continuity equation " for steady state flow inside the compressor i.e mass flow rate remains constant:

              m^ = ρe*Ae*Ve = ρi*Ai*Vi

- Density of air at inlet using inlet conditions. Again, using the ideal gas state equation:

               Pi / ρi = R*Ti  

Where,

           Ti: The absolute temperature at inlet

           ρi: The density of air at inlet

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρi = Pi / (R*Ti)

                ρi = 100 / (0.287*( 273 + 20 ) )

                ρi = 1.18918 kg/m^3

Using continuity expression:

               Ai = m^ / ρi*Vi

               Ai = 0.1334 / 1.18918*1

               Ai = 0.11217 m^2          

- From definition the volumetric flow rate at inlet ( Qi ) is determined by the following equation:

                   Qi = Ai*Vi

Where,

           Ai: The inlet cross sectional area

                  Qi = 0.11217*1

                  Qi = 0.11217 m^3 / s    

- The equations that will help us with required plots are:

Inlet cross section area ( Ai )

                Ai = m^ / ρi*Vi  

                Ai = 0.1334 / 1.18918*Vi

                Ai ( V ) = 0.11217 / Vi   .... Eq 1

Inlet flow rate ( Qi ):

                Qi = 0.11217 m^3 / s ... constant  Eq 2

               

6 0
3 years ago
A gas turbine operates with a regenerator and two stages of reheating and intercooling. Air enters this engine at 14 psia and 60
Rzqust [24]

Answer:

flow(m) = 7.941 lbm/s

Q_in = 90.5184 Btu/lbm

Q_out = 56.01856 Btu/lbm

Explanation:

Given:

- T_1 = 60 F = 520 R

- T_6 = 940 = 1400 R

- Heat ratio for air k = 1.4

- Compression ratio r = 3

- W_net,out = 1000 hp

Find:

mass flow rate of the air

rates of heat addition and rejection

Solution:

- Using ideal gas relation compute T_2, T_4, T_10:

                     T_2 = T_1 * r^(k-1/k)

                     T_2 = T_4 = T_10 = 520*3^(.4/1.4) = 711.744 R

- Using ideal gas relation compute T_7, T_5, T_9:

                     T_7 = T_6 * r^(-k-1/k)

                     T_7 = T_5 = T_9 = 1400*3^(-.4/1.4) = 1022.84 R

- The mass flow rate is obtained by:

                     flow(m) = W_net,out / 2*c_p*(1400-1022.84-711.744+520)

                     flow(m) = 1000*.7068 / 2*0.24*(1400-1022.84-711.744+520)

                     flow(m) = 7.941 lbm/s

- The heat input is as follows:

                     Q_in = c_p*(T_6 - T_5)

                     Q_in = 0.24*(1400 - 1022.84)

                     Q_in = 90.5184 Btu/lbm

- The heat output is as follows:

                     Q_out = c_p*(T_10 - T_1)

                     Q_out = 0.24*(711.744 - 520)

                    Q_out = 56.01856 Btu/lbm

                                           

                     

5 0
3 years ago
Hi, any kind of help on these questions will be appreciated.
Zielflug [23.3K]

Answer:

IDK

Explanation:

8 0
3 years ago
A cylindrical tank is required to contain a gage pressure 560 kPa . The tank is to be made of A516 grade 60 steel with a maximum
adoni [48]

Answer:

5.6 mm

Explanation:

Given that:

A cylindrical tank is required to contain a:

Gage Pressure P = 560 kPa

Allowable normal stress \sigma = 150 MPa = 150000 Kpa.

The inner diameter of the tank = 3 m

In a closed cylinder  there exist both the circumferential stress and the longitudinal stress.

Circumferential stress \sigma = \dfrac{pd}{2t}

Making thickness t the subject; we have

t = \dfrac{pd}{2* \sigma}

t = \dfrac{560000*3}{2*150000000}

t = 0.0056 m

t = 5.6 mm

For longitudinal stress.

\sigma = \dfrac{pd}{4t}

t= \dfrac{pd}{4*\sigma }

t = \dfrac{560000*3}{4*150000000}

t = 0.0028  mm

t = 2.8 mm

From the above circumferential stress and longitudinal stress; the stress with the higher value will be considered ; which is circumferential stress and it's minimum value  with the maximum thickness = 5.6 mm

8 0
3 years ago
What's the relationship between energy and time<br>​
boyakko [2]

Answer:

The relationship between power, energy, and time can be described by the following equation : P = Δ E s y s Δ t. P is the average power output, measured in watts (W) ΔEsys is the net change in energy of the system in joules (J) - also known as work. Δt is the duration - how long the energy use takes - measured in seconds (s).

Explanation:

8 0
3 years ago
Other questions:
  • Technician A says that you don’t need to use an exhaust extraction system when working on vehicles equipped with a catalytic con
    9·1 answer
  • Argon is compressed in a polytropic process with n=1.2 from 120 kPa and 10 °C to 800 kPa in a piston cylinder device. Determine:
    11·1 answer
  • Can i use two shunts and one meter
    11·2 answers
  • in a vehicle you're servicing the fuel pressure drops rapidly when the engine is says that one or more turned off. Technician a
    7·1 answer
  • A rectangular open channel is 20 ft wide and has a bed slope of 0.007. Manning's roughness coefficient n is 0.03. It is in unifo
    10·1 answer
  • When must an Assured Equipment Grounding Conductor Program (AEGCP) be in place?
    10·1 answer
  • The radial component of acceleration of a particle moving in a circular path is always:________ a. negative. b. directed towards
    9·1 answer
  • A video inspection snake is use
    7·1 answer
  • Select the correct text in the passage.
    6·2 answers
  • A torque T 5 3 kN ? m is applied to the solid bronze cylinder shown. Determine (a) the maximum shearing stress, (b) the shethe 1
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!