Answer:
Q(h=200)=0.35W
Q(h=3000)=5.25W
Explanation:
first part h=200W/Km^2
we must use the convection heat transfer equation for the chip
Q=hA(Ts-T∞)
h=
convective coefficient=200W/m2 K
A=Base*Leght=5mmx5mm=25mm^2
Ts=temperature of the chip=85C
T∞=temperature of coolant=15C
Q=200x2.5x10^-5(85-15)=0.35W
Second part h=3000W/Km^2
Q=3000x2.5x10^-5(85-15)=5.25W
Answer:
Coordination number:
Coordination number can be defined as the number of nearest atoms which touch the central atom.In simple word the number of neighbours atoms which touches a an atoms.
Atomic packing factor :
It is also known as packing efficiency.It is the fraction of volume in a Crystal which is filled by constituent particles.It is always less than 1.Generally it is represented in the fraction.
Ex:
Lets take FCC cubic cell
Coordination number = 12 .
Atomic packing factor = 74%
Answer:
0.1047N
Explanation:
To solve this problem we must remember the conversion factors, remembering that 1 revolution equals 2π radians and 1min equals 60s
in conclusion, to know how many rad / s an element rotates which is expressed in Rev / min we must only multiply by 0.1047
Answer:
Glycogen is the primary energy source for muscle and liver cells.
Explanation:
Glycogen is a readily mobilized storage form of glucose. It is a very large, branched polymer of glucose residues that can be broken down to yield glucose molecules when energy is needed. Most of the glucose residues in glycogen are linked by α-1,4-glycosidic bonds. Branches at about every tenth residue are created by α-1,6-glycosidic bonds.
Glycogen is not as reduced as fatty acids are and consequently not as energy rich. Why do animals store any energy as glycogen? Why not convert all excess fuel into fatty acids? Glycogen is an important fuel reserve for several reasons. The controlled breakdown of glycogen and release of glucose increase the amount of glucose that is available between meals. Hence, glycogen serves as a buffer to maintain blood-glucose levels. Glycogen's role in maintaining blood-glucose levels is especially important because glucose is virtually the only fuel used by the brain, except during prolonged starvation. Moreover, the glucose from glycogen is readily mobilized and is therefore a good source of energy for sudden, strenuous activity. Unlike fatty acids, the released glucose can provide energy in the absence of oxygen and can thus supply energy for anaerobic activity.