The heat lost by the water will be equivalent to the energy gained by the alcohol. Thus:
maCaΔT = -mwCwΔT
400 x 2.64 x (T - 10) = 400 x 4.186 x (88 - T)
T = 57.8 °C
Answer:
the angle of incidence θ is 45.56 º
Explanation:
Given data
strikes the mirror before wall x = 30.7 cm
reflected ray strikes the wall y = 30.1 cm
to find out
the angle of incidence θ
solution
let us consider ray is strike at angle θ so after strike on surface ray strike to wall at angle 90 - θ
we will apply here right angle triangle rule that is
tan( 90 - θ) = y /x
tan( 90 - θ) = 30.1 / 30.7
90 - θ = tan^-1 (30.1/30.7)
90 - θ = 44.4345
θ = 45.56 º
the angle of incidence θ is 45.56 º
<h2>When two object P and Q are supplied with the same quantity of heat, the temperature change in P is observed to be twice that of Q. The mass of P is half that of Q. The ratio of the specific heat capacity of P to Q</h2>
Explanation:
Specific heat capacity
It is defined as amount of heat required to raise the temperature of a substance by one degree celsius .
It is given as :
Heat absorbed = mass of substance x specific heat capacity x rise in temperature
or ,
Q= m x c x t
In above question , it is given :
For Q
mass of Q = m
Temperature changed =T₂/2
Heat supplied = x
Q= mc t
or
X=m x C₁ X T₁
or, X =m x C₁ x T₂/2
or, C₁=X x 2 /m x T₂ (equation 1 )
For another quantity : P
mass of P =m/2
Temperature= T₂
Heat supplied is same that is : X
so, X= m/2 x C₂ x T₂
or, C₂=2X/m. T₂ (equation 2 )
Now taking ratio of C₂ to c₁, We have
C₂/C₁= 2X /m.T₂ /2X /m.T₂
so, C₂/C₁= 1/1
so, the ratio is 1: 1
The answer is to the ground.
Gravity refers to the force that holds together the universe. On Earth, the gravity attempts to change the velocity of all the objects on the Earth's surface toward the ground at a rate of 9.8 meters per second squared according to Galileo.