Answer:
Higher oxidation state metals form stronger bong with ligands
Explanation:
Ligand strength are based on oxidation number, group and its properties
Answer:

Explanation:
- State of benzene at RTP = liquid
- State of chloroform at RTP = liquid
- Boiling point of benzene = 80.1 °C
- Boiling point of chloroform = 61.2 °C
Since, both of the chemicals are liquids, we can separate it by the process of distillation.
<u>Distillation:</u>
- is the process in which we separate two liquids on the basis of their difference in boiling points.
<u>How it works:</u>
Since chloroform has less boiling point, it will evaporate and collected first and benzene will follow it after sometime.
- Apparatus of distillation is in the attached file.
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:
Density = 7 g/mL
Explanation:
Given that,
Mass of a sample, m = 14 g
Volume of the sample, V = 2 mL
We need to find the density of the liquid sample. We know that the density of an object is given by :

So, the density of the liquid sample is 7 g/mL.
Answer:
Composition of the mixture:
%
%
Composition of the vapor mixture:
%
%
Explanation:
If the ideal solution model is assumed, and the vapor phase is modeled as an ideal gas, the vapor pressure of a binary mixture with
and
molar fractions can be calculated as:

Where
and
are the vapor pressures of the pure compounds. A substance boils when its vapor pressure is equal to the pressure under it is; so it boils when
. When the pressure is 0.60 atm, the vapor pressure has to be the same if the mixture is boiling, so:

With the same assumptions, the vapor mixture may obey to the equation:
, where P is the total pressure and y is the fraction in the vapor phase, so:
%
The fractions of B can be calculated according to the fact that the sum of the molar fractions is equal to 1.