The correct answer for this question is activation energy, orientation, and frequency.
The rate of a chemical reaction is directly related to its activation energy because the higher the activation energy the lower is the rate of reaction as we know the reaction only proceed when the reactants have absorbed the enough heat energy to reach the transition state. Thus activation energy determines the rate of reaction.
The orientation of the particles is also very important as we know that the reaction between the two reactants only occur when they collide with proper orientation in time the greater the probability of the collision the greater is the rate of reaction and also the number of collisions also determines the rate of reaction.
The frequency is directly proportional to the rate of chemical reaction as the frequency of the collision increases the rate of the chemical reaction also increases.
To know more about the factors effecting rate of chemical reaction click here:
brainly.com/question/16048169
#SPJ4
atoms are made of 3 types of sub atomic particles- protons, neutrons and electrons
from these 3 particles, electrons are responsible for participating in chemical bonds. therefore chemical properties of elements are based on the number of electrons present.
valence electrons are the number of electrons in the outermost energy shell that are involved in chemical bonds.
atoms with same number of valence electrons are grouped in to columns called groups.
therefore elements of the same group have same number of valence electrons, hence similar chemical properties.
from the options given
only Be and Mg belong to the same group they both belong to group 2 with 2 valence electrons
therefore Be and Mg have similar chemical properties
answer is
1) Be and Mg
2AgNO3 + Zn --> Zn(NO3)2 + 2Ag
Its a redox reaction, Zn is oxidised (0 --> 2+), Ag is reduced (1+ --> 0)
Answer to this is O-atom.
Explanation: The Bronsted acid-base theory is the backbone of chemistry. This theory focuses mainly on acids and bases acting as proton donors or proton acceptors.
where
is the Lewis Acid and
is the Lewis Base and
is the Covalent Bond.
Reaction of dissociation of
in
is given as:

In this reaction O-atom has lone pair in water and therefore it accepts the proton from
forming a Lewis Base.
Answer:D. 9.1 mole Ar
Explanation:
364 g Ar x 1 mole Ar / 40 g Ar
= 9.1 moles Ar