Answer:
The correct option is C
Explanation:
From the question we are told that
The initial speed of the rocket is
The speed of the rocket engine sound is
The final speed of the rocket is
The speed of the sound at would still remain V this because the speed of sound wave is constant and is not dependent on the speed of the observer(The mountain ) or the speed of the source (The rocket ).
A clear example when lightning strikes you will first see (that is because it travels at the speed of light which is greater than the speed of sound) but it would take some time before you hear the sound of the
lightning
Here we see that the speed of the lightning(speed of sound) does not affect the speed of the sound it generates
Answer: 211.059 m
Explanation:
We have the following data:
The angle at which the ball leaves the bat
The initial velocity of the ball
The acceleration due gravity
We need to find how far (horizontally) the ball travels in the air:
Firstly we need to know this velocity has two components:
<u>Horizontally:</u>
(1)
(2)
<u>Vertically:</u>
(3)
(4)
On the other hand, when we talk about parabolic movement (as in this situation) the ball reaches its maximum height just in the middle of this parabola, when and the time is half the time it takes the complete parabolic path.
So, if we use the following equation, we will find :
(5)
Isolating :
(6)
(7)
(8)
Now that we have the time it takes to the ball to travel half of is path, we can find the total time it takes the complete parabolic path, which is twice :
(9)
With this result in mind, we can finally calculate how far the ball travels in the air:
(10)
Substituting (2) and (9) in (10):
(11)
Finally:
Answer:
q = 3.6 10⁵ C
Explanation:
To solve this exercise, let's use one of the consequences of Gauss's law, that all the charge on a body can be considered at its center, therefore we calculate the electric field on the surface of a sphere with the radius of the Earth
r = 6 , 37 106 m
E = k q / r²
q = E r² / k
q =
q = 4.5 10⁵ C
Now let's calculate the charge on the planet with E = 222 N / c and radius
r = 0.6 r_ Earth
r = 0.6 6.37 10⁶ = 3.822 10⁶ m
E = k q / r²
q = E r² / k
q =
q = 3.6 10⁵ C
The answer to this question would be: a spring scale.
The spring scale that you use to determine your body weight is actually a device that measures your body gravitational force. The force itself influenced by your body weight, that is why it can determine your body weight.
More weight means more force, more force will shrink the spring more.