Answer:
(a) 43.2 kC
(b) 0.012V kWh
(c) 0.108V cents
Explanation:
<u>Given:</u>
- i = current flow = 3 A
- t = time interval for which the current flow =

- V = terminal voltage of the battery
- R = rate of energy = 9 cents/kWh
<u>Assume:</u>
- Q = charge transported as a result of charging
- E = energy expended
- C = cost of charging
Part (a):
We know that the charge flow rate is the electric current flow through a wire.

Hence, 43.2 kC of charge is transported as a result of charging.
Part (b):
We know the electrical energy dissipated due to current flow across a voltage drop for a time interval is given by:

Hence, 0.012V kWh is expended in charging the battery.
Part (c):
We know that the energy cost is equal to the product of energy expended and the rate of energy.

Hence, 0.108V cents is the charging cost of the battery.
Answer:
Recoil speed,
Explanation:
Given that,
Mass of the comet fragment, 
Speed of the comet fragment, 
Mass of Callisto, 
The collision is completely inelastic. Assuming for this calculation that Callisto's initial momentum is zero. So,

V is recoil speed of Callisto immediately after the collision.

So, the recoil speed of Callisto immediately after the collision is 
The speed of both cars is the same ... 80 km per hour.
But their velocities are different, because DIRECTION is part of velocity, and their directions are different.
Answer:
There's no PV graph. kindly provide it so we help
The correct answer is A. The water at this conditions is in the solid phase. This can be verified by using a phase diagram. A phase diagram is a figure which shows the phases of a certain substance at a specific temperature and pressure.