Answer: 0.2 hours
Explanation: In order to solve this question we have to considerer that a recargeable battery can supply 1800 mA in one hour then we have to determine how long could this battery drive current through a long, thin wire of resistance 34 Ω .
Besides, this battery has a voltage of 12 V
so by using the Ohm law we also know that V=R*I,
Fron this we can obtain:
I= V/R= 12 V/ 34 Ω=0.35 A= 350 mA
then considering that this battery can supply 1800 mA in one hour we have this battery can supply 350 mA in x time in the form:
1hour------- 1800 mA
x hour--------350 mA
time= 350/1800= 0.2 hour
Answer:
Answer: Kelvin ________________
230 Newton
Electric charge consists of two types i.e. positively electric charge and negatively electric charge.There was a famous scientist who investigated about this charges. His name is Coulomb and succeeded in formulating the force of attraction or repulsion between two charges i.e. :
F = electric force (N)
k = electric constant (N m² / C²)
q = electric charge (C)
r = distance between charges (m)
The value of k in a vacuum = 9 x 10⁹ (N m² / C²)
F = k(q1 q2)/ r^2
Distance between protons = d = 10⁻¹⁵ m
charge of proton = q = 1.6 × 10⁻¹⁹ C
Here q1=q2
electric force = F =230N
Coulomb's Law. Two protons in an atomic nucleus are typically separated by a distance of 2×10−15m. The electric repulsive force between the protons is huge, but the attractive nuclear force is even stronger and keeps the nucleus from bursting apart.
2 Nuclei and the Need for an Attractive Nuclear Force. The Coulomb force also acts within atomic nucleii, whose characteristic dimension is 10 m, which is called a fermi. There are two protons in a He nucleus, which repel each other because of the Coulomb force.
Find more about electric force of repulsion between nuclear protons
brainly.com/question/8404637
#SPJ4
They traveled for six hours and forty two minutes