Incandescent lights get hot very quickly and therefore can easily burn u or catch fire
Answer:
1.59 seconds
12.3 meters
but if you are wise you will read the entire answer.
Explanation:
This is a good question -- if not a bit unusual. You should try and understand the details. It will come in handy.
Time
<u>Given</u>
a = 0 This is the critical point. There is no horizontal acceleration.
d = 20 m
v = 12.6 m/s
<u>Formula</u>
d = vi * t + 1/2at^2
<u>Solution</u>
Since the acceleration is 0, the formula reduces to
d = vi * t
20 = 12.6 * t
t = 20 / 12.6
t = 1.59 seconds.
It takes 1.59 seconds to hit the ground
Height of the building
<u>Givens</u>
t = 1.59 sec
vi = 0 Another critical point. The beginning speed vertically is 0
a = 9.8 m/s^2 The acceleration is vertical.
<u>Formula</u>
d = vi*t + 1/2 a t^2
<u>Solution</u>
d = 1/2 a*t^2
d = 1/2 * 9.8 * 1.59^2
d = 12.3 meters.
The two vi's are not to be confused. The horizontal vi is a number other other 0 (in this case 12.6 m/s horizontally)
The other vi is a vertical speed. It is 0.
Answer:

Explanation:
First, define
( electromotive force )-is the unit electric charge imparted by an energy source. In this case the generator.
The peak emf is:
=
Substituting
and the value for peaf
gives:
Total length=
=
=
Hence, wire's length is 171.43m
Answer:
The correct answer is B
Explanation:
To calculate the acceleration we must use Newton's second law
F = m a
a = F / m
To calculate the force we use the defined pressure and the radiation pressure for an absorbent surface
P = I / c absorbent surface
P = F / A
F / A = I / c
F = I A / c
The area of area of a circle is
A = π r²
We replace
F = I π r² / c
Let's calculate
F = 8.0 10⁻³ π (1.0 10⁻⁶)²/3 10⁸
F = 8.375 10⁻²³ N
Density is
ρ = m / V
m = ρ V
m = ρ (4/3 π r³)
m = 4500 (4/3 π (1 10⁻⁶)³)
m = 1,885 10⁻¹⁴ kg
Let's calculate the acceleration
a = 8.375 10⁻²³ / 1.885 10⁻¹⁴
a = 4.44 10⁻⁹ m/s² absorbent surface
The correct answer is B