1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tamaranim1 [39]
3 years ago
5

What happens to the gravitational force between two objects when the distance between them increases by 3 times?

Physics
1 answer:
quester [9]3 years ago
3 0

Answer:

it decrease by 9 times

Explanation:

If the separation distance between any two objects is tripled (increased by a factor of 3), then the force of gravitational attraction is decreased by a factor of 9 (3 raised to the second power).

You might be interested in
Two rigid rods are oriented parallel to each other and to the ground. The rods carry the same current in the same direction. The
Greeley [361]

Answer:

I = 215.76 A  

Explanation:

The direction of magnetic field produced by conductor 1 on the location of conductor 2 is towards left. Based on Right Hand Rule -1 and taking figure 21.3 as reference, the direction of force Fm due to magnetic field produced at C_2 is shown above. The force Fm balances the weight of conductor 2.  

Fm = u_o*I^2*L/2*π*d

where I is the current in each rod, d = 0.0082 m is the distance 27rId  

between each, L = 0.85 m is the length of each rod.

Fm = 4π*10^-7*I^2*1.1/2*π*0.0083

The mass of each rod is m = 0.0276 kg  

F_m = mg

4π*10^-7*I^2*1.1/2*π*0.0083=0.0276*9.8

I = 215.76 A  

note:

mathematical calculation maybe wrong or having little bit error but the method is perfectly fine

5 0
3 years ago
In the Olympic shot-put event, an athlete throws the shot with an initial speed of 12.0m/s at a 40.0? angle from the horizontal.
HACTEHA [7]

A) Horizontal range: 16.34 m

B) Horizontal range: 16.38 m

C) Horizontal range: 16.34 m

D) Horizontal range: 16.07 m

E) The angle that gives the maximum range is 41.9^{\circ}

Explanation:

A)

The motion of the shot is a projectile motion, so we can analyze separately its vertical motion and its horizontal motion.

The vertical motion is a uniformly accelerated motion, so we can use the following suvat equation to find the time of flight:

s=u_y t + \frac{1}{2}at^2 (1)

where

s = -1.80 m is the vertical displacement of the shot to reach the ground (negative = downward)

u_y = u sin \theta is the initial vertical velocity, where

u = 12.0 m/s is the initial speed

\theta=40.0^{\circ} is the angle of projection

So

u_y=(12.0)(sin 40.0^{\circ})=7.7 m/s

a=g=-9.8 m/s^2 is the acceleration due to gravity (downward)

Substituting the numbers, we get

-1.80 = 7.7t -4.9t^2\\4.9t^2-7.7t-1.80=0

which has two solutions:

t = -0.21 s (negative, we ignore it)

t = 1.778 s (this is the time of flight)

The horizontal motion is instead uniform, so the horizontal range is given by

d=u_x t

where

u_x = u cos \theta=(12.0)(cos 40^{\circ})=9.19 m/s is the horizontal velocity

t = 1.778 s is the time of flight

Solving, we find

d=(9.19)(1.778)=16.34 m

B)

In this second case,

\theta=42.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 42.5^{\circ})=8.1 m/s

So the equation for the vertical motion becomes

4.9t^2-8.1t-1.80=0

Solving for t, we find that the time of flight is

t = 1.851 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 42.5^{\circ})=8.85 m/s

So, the range of the shot is

d=u_x t = (8.85)(1.851)=16.38 m

C)

In this third case,

\theta=45^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 45^{\circ})=8.5 m/s

So the equation for the vertical motion becomes

4.9t^2-8.5t-1.80=0

Solving for t, we find that the time of flight is

t = 1.925 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 45^{\circ})=8.49 m/s

So, the range of the shot is

d=u_x t = (8.49)(1.925)=16.34 m

D)

In this 4th case,

\theta=47.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 47.5^{\circ})=8.8 m/s

So the equation for the vertical motion becomes

4.9t^2-8.8t-1.80=0

Solving for t, we find that the time of flight is

t = 1.981 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 47.5^{\circ})=8.11 m/s

So, the range of the shot is

d=u_x t = (8.11)(1.981)=16.07 m

E)

From the previous parts, we see that the maximum range is obtained when the angle of releases is \theta=42.5^{\circ}.

The actual angle of release which corresponds to the maximum range can be obtained as follows:

The equation for the vertical motion can be rewritten as

s-u sin \theta t + \frac{1}{2}gt^2=0

The solutions of this quadratic equation are

t=\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g}

This is the time of flight: so, the horizontal range is

d=u_x t = u cos \theta (\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g})=\\=\frac{u^2}{-2g}(1+\sqrt{1+\frac{2gs}{u^2 sin^2 \theta}})sin 2\theta

It can be found that the maximum of this function is obtained when the angle is

\theta=cos^{-1}(\sqrt{\frac{2gs+u^2}{2gs+2u^2}})

Therefore in this problem, the angle which leads to the maximum range is

\theta=cos^{-1}(\sqrt{\frac{2(-9.8)(-1.80)+(12.0)^2}{2(-9.8)(-1.80)+2(12.0)^2}})=41.9^{\circ}

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

8 0
3 years ago
8. two +1 C charges are separated by 3000m. What is the magnitude of the electric force between them?
Sidana [21]

Answer:

1000 N

Explanation:

The magnitude of the electrostatic force between two charged object is given by

F=k\frac{q_1 q_2}{r^2}

where

k is the Coulomb constant

q1, q2 is the magnitude of the two charges

r is the distance between the two objects

Moreover, the force is:

- Attractive if the two forces have opposite sign

- Repulsive if the two forces have same sign

In this problem:

q_1=q_2=+1C are the two charges

r = 3000 m is their separation

Therefore, the electric force between the charges is:

F=(9\cdot 10^9)\frac{(1)(1)}{3000^2}=1000 N

8 0
3 years ago
What is the formula for silver nitrate
serious [3.7K]

Answer:

Explanation:

Agno3

8 0
3 years ago
What is the correct classification of a mixture in which both a solid and a liquid are visible?
stepan [7]
<span>The answer is a heterogeneous mixture. Mixtures can be homogeneous and heterogeneous. If a solid and a liquid of a mixture cannot be separated and the difference between them is not visible, it is called homogeneous mixture (or solution). If a solid and a liquid of a mixture are visible and can be separated easily, the mixture is called heterogeneous.</span>
7 0
3 years ago
Read 2 more answers
Other questions:
  • The noble gases are the least what of any elements on the periodic table
    7·1 answer
  • two vehicles have a head on collision. one vehicle has a mass of 3000 kg and moves at 25 m/s while the second vehicle has a mass
    15·1 answer
  • Describe how matter cycles through an ecosystem
    6·1 answer
  • A man walks 18m East then 9.5 North. What is the direction of his displacement?​
    10·1 answer
  • Which of the following careers would require a degree in physics?
    6·1 answer
  • Multiple-Concept Example 4 deals with a situation similar to that presented here. A marble is thrown horizontally with a speed o
    15·1 answer
  • You notice that heat is released during a chemical reaction. This reaction is a(n) _______ reaction. endothermic heat hot exothe
    11·1 answer
  • Carbon-14 has a half life of 5730 years. Consider a sample of fossilized wood that when alive would have contained 24g of C-14 i
    14·1 answer
  • Which of these is one of six most common elements found in the human body??
    7·1 answer
  • Popular foods in Israel
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!