Answer: preventive maintenance
Explanation:
Answer:
<u><em>both, one</em></u>
Explanation:
<em>Alternating current flows in both directions and direct current flows in one direction.</em>
<em></em>
<em>Hope it helps.</em>
<em>;)</em>
<em><3</em>
Answer: answer provided in the explanation section.
Explanation:
Weather phenomenons that would impart Aviation Operations in Santa Barbara -
1. Although winters are cold, wet, and partly cloudy here. It is in general favorable for flying. But sometimes strong winds damage this pleasant weather.
2. The Sundowner winds cause rapid warming and a decrease in relative humidity. The wind speed is very high surrounding this area for this type of wind.
3. Cloud is an important factor that affects aviation operations. Starting from April, here the sky is clouded up to November. The sky is overcast (80 to 100 percent cloud cover) or mostly cloudy (60 to 80 percent) 44% on a yearly basis. Thus extra cloud cover can trouble aviation operations.
4. The average hourly wind speed can also be a factor. This also experiences seasonal variations, these variations are studied carefully in the aviation industry. The windier part of the year starts in January and ends in June. In April, the wind speed can reach 9.5 miles per hour.
This and more are some factors to look into when considering wheather conditions that would affect aviation operations.
I hope this was a bit helpful. cheers
Answer:
b. 2.3 kPa.
Explanation:
This situation can be modelled by Bernoulli's Principle, as there are no energy interaction throughout the multisection pipe and current lines exists between both ends. Likewise, this system have no significant change in gravitational potential energy since it is placed horizontally on the ground and is described by the following model:
Where:
, - Pressures at the beginning and at the end of the current line, measured in kilopascals.
- Water density, measured in kilograms per cubic meter.
, - Fluid velocity at the beginning and at the end of the current line, measured in meters per second.
Now, the pressure difference between these two points is:
If , and , then:
(1 kPa is equivalent to 1000 Pa)
Hence, the right answer is B.