1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
beks73 [17]
3 years ago
9

The force required to stretch a Hooke’s-law spring varies from 0 N to 63.5 N as we stretch the spring by moving one end 5.31 cm

from its unstressed position. Find the force constant of the spring. Answer in units of N/m. Find the work done in stretching the spring. Answer in units of J.
Physics
1 answer:
Alika [10]3 years ago
8 0

Answer:

Force constant will be 1195.85 N/m

Work done will be 1.6859 J

Explanation:

We have given the force,  F = 63.5 N

Spring is stretched by 5.31 cm

So x = 0.0531 m

Force is given , F = 63.5 N

We know that force is given by F=kx

So 63.5=k\times 0.0531

k = 1195.85 N/m

Now we have to find the work done

We know that work done is given by

W=\frac{1}{2}kx^2=\frac{1}{2}\times 1195.85\times 0.0531^2=1.6859J

You might be interested in
If the jet is moving at a speed of 1300 km/h at the lowest point of the loop, determine the minimum radius of the circle so that
Natalka [10]

Answer:

R = 2216m and The normal force of the seat on the pilot is 5008N

Explanation:

See attachment below please.

5 0
3 years ago
In the design of a rapid transit system, it is necessary to balance the average speed of a train against the distance between st
bekas [8.4K]

Answer:

a) t = 746 s

b) t = 666 s

Explanation:

a)

  • Total time will be the sum of the partial times between stations plus the time stopped at the stations.
  • Due to the distance between stations is the same, and the time between stations must be the same (Because the train starts from rest in each station) we can find total time, finding the time for any of the distance between two stations, and then multiply it times the number of distances.
  • At any station, the train starts from rest, and then accelerates at 1.1m/s2 till it reaches to a speed of 95 km/h.
  • In order to simplify things, let's first to convert this speed from km/h to m/s, as follows:

       v_{1} = 95 km/h *\frac{1h}{3600s}*\frac{1000m}{1 km} = 26.4 m/s  (1)

  • Applying the definition of acceleration, we can find the time traveled by the train before reaching to this speed, as follows:

       t_{1} = \frac{v_{1} }{a_{1} } = \frac{26.4m/s}{1.1m/s2} = 24 s (2)

  • Next, we can find the distance traveled during this time, assuming that the acceleration is constant, using the following kinematic equation:

       x_{1} = \frac{1}{2} *a_{1} *t_{1} ^{2} = \frac{1}{2} * 1.1m/s2*(24s)^{2} = 316.8 m  (3)

  • In the same way, we can find the time needed to reach to a complete stop at the next station, applying the definition of acceleration, as follows:

       t_{3} = \frac{-v_{1} }{a_{2} } = \frac{-26.4m/s}{-2.2m/s2} = 12 s (4)

  • We can find the distance traveled while the train was decelerating as follows:

       x_{3} = (v_{1} * t_{3})   + \frac{1}{2} *a_{2} *t_{3} ^{2} \\ = (26.4m/s*12s) - \frac{1}{2} * 2.2m/s2*(12s)^{2} = 316.8 m - 158.4 m = 158.4m  (5)

  • Finally, we need to know the time traveled at constant speed.
  • So, we need to find first the distance traveled at the constant speed of 26.4m/s.
  • This distance is just the total distance between stations (3.0 km) minus the distance used for acceleration (x₁) and the distance for deceleration (x₃), as follows:
  • x₂ = L - (x₁+x₃) = 3000 m - (316.8 m + 158.4 m) = 2525 m (6)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{2525m}{26.4m/s} = 95.6 s   (7)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 95.6 s + 12 s = 131.6 s (8)
  • Due to we have six stations (including those at the ends) the total time traveled while the train was moving, is just t times 5, as follows:
  • tm = t*5 = 131.6 * 5 = 658.2 s (9)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 4 intermediate stops, we need to add to total time 22s * 4 = 88 s, as follows:
  • Ttotal = tm + 88 s = 658.2 s + 88 s = 746 s (10)

b)

  • Using all the same premises that for a) we know that the only  difference, in order to find the time between stations, will be due to the time traveled at constant speed, because the distance traveled at a constant speed will be different.
  • Since t₁ and t₃ will be the same, x₁ and x₃, will be the same too.
  • We can find the distance traveled at constant speed, rewriting (6) as follows:
  • x₂ = L - (x₁+x₃) = 5000 m - (316.8 m + 158.4 m) = 4525 m (11)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{4525m}{26.4m/s} = 171.4 s   (12)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 171.4 s + 12 s = 207.4 s (13)
  • Due to we have four stations (including those at the ends) the total time traveled while the train was moving, is just t times 3, as follows:
  • tm = t*3 = 207.4 * 3 = 622.2 s (14)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 2 intermediate stops, we need to add to total time 22s * 2 = 44 s, as follows:
  • Ttotal = tm + 44 s = 622.2 s + 44 s = 666 s (15)
7 0
2 years ago
What mechanism of energy is transferred by mass motion of fluid from one region of space to another?​
lora16 [44]
Convection, because it is the process of heat transfer from one location to the next by the movement of fluids. The moving fluid carries energy within it.
5 0
3 years ago
What is the difference between the number of electrons in an atom of selenium, Se, and the number of electrons in an atom of alu
Oxana [17]
Well, electrons can be converted into a atomic number so if SE atomic number is 34 that means it has 34 electrons. AI has a atomic number of 13 meaning it has 13 electrons.

So the difference is that SE has more electrons then AI.

Hope this helped. :D
4 0
3 years ago
Read 2 more answers
Is The neck is an example of a simple machine in the human body?
tatyana61 [14]
No it's the quite opposite simple
3 0
3 years ago
Read 2 more answers
Other questions:
  • In this diagram,the distance known as the amplitude is shown by choice
    6·2 answers
  • A major artery with a cross sectional area of 1.00cm^2 branches into 18 smaller arteries, each with an average cross sectional a
    10·1 answer
  • Change the following sentences into Passive Voice: (5M)
    15·1 answer
  • What two simple machines make up an axe?
    11·1 answer
  • A device that measures potential is a(n) circuit.
    10·1 answer
  • An initially electrically neutral conducting sphere is placed on an insulating stand. A negatively-charged glass rod is brought
    9·1 answer
  • How is budgeting different for most states than for the federal government?
    6·1 answer
  • What element has conductivity,shiney luster,magnitic <br> -science
    8·1 answer
  • A 75.0 kg driver slides into a seat in a truck that has only 1 spring. The spring compresses 1.60 cm = 0.0160 m. What is the spr
    5·1 answer
  • 1. Who explained the motions of the planets of the solar system at the same
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!