Explanation:
In any chemical change, one or more initial substances change into a different substance or substances. ... According to the law of conservation of matter, matter is neither created nor destroyed, so we must have the same number and kind of atoms after the chemical change as were present before the chemical change
Example:
The carbon atom in coal becomes carbon dioxide when it is burned. The carbon atom changes from a solid structure to a gas but its mass does not change.
The molecular mass of the immunoglobulin G, given the data from the question is 1.53×10⁵ g/mole
<h3>How to determine the molarity</h3>
We'll begin by calculating the molarity of the immunoglobulin G. This is illustrated below:
- Volume = 0.106 L
- Temperature (T) = 25 °C = 25 + 273 = 298 K
- Osmotic pressure (π) = 0.733 mbar = 0.733 × 0.000987 = 0.00072 atm
- Gas constant (R) = 0.0821 atm.L/Kmol
- Van't Hoff factor (i) = 1
- Molarity (M)
π = iMRT
M = π / iRT
M = 0.00072 / (1 × 0.0821 × 298)
M = 0.000029 M
<h3>How to determine the mole of immunoglobulin G</h3>
- Molarity = 0.000029 M
- Volume = 0.106 L
- Mole =?
Mole = Molarity × volume
Mole = 0.000029 × 0.106
Mole = 3.074×10⁻⁶ mole
<h3>How to determine the molar mass of mmunoglobulin G</h3>
- Mole = 3.074×10⁻⁶ mole
- Mass = 0.470 g
- Molar mass =?
Molar mass = mass / mole
Molar mass = 0.47 / 3.074×10⁻⁶
Molar mass = 1.53×10⁵ g/mole
Learn more about Osmotic pressure:
brainly.com/question/5925156
#SPJ1
20 cups of flour, 30 eggs, and 10 cups of sugar