1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AveGali [126]
3 years ago
12

Ytyfgdvvdgjuvsthvhfcj

Physics
1 answer:
Brut [27]3 years ago
4 0
Yes, that’s very inspiring.
You might be interested in
A person travelled 350 m east from his home and returns back home an hour has displacement of_?​
Svetradugi [14.3K]

Answer:

vector of zero magnitude

Explanation:

The displacement is a vector magnitude, therefore, in addition to being a module, it has direction and sense.

In this case it moved 350 m and then returned the same 350 m, so the total displacement is zero.

If we draw the vector, one has a directional direction to the right and the other direction to the left, therefore when adding the two vectors gives a vector of zero magnitude

7 0
3 years ago
NASA scientists suggest using rotating cylindrical spacecraft to replicate gravity while in a weightless environment. Consider s
dusya [7]

Answer:

Explanation:

Given

diameter of spacecraft d=148\ m

radius r=74\ m

Force of gravity F_g=mg

where m =mass of object

g=acceleration due to  gravity on earth

Suppose v is the speed at which spacecraft is rotating so a net centripetal  acceleration is acting on spacecraft which is given by

F_c=\frac{mv^2}{r}

F_c=F_g

\frac{mv^2}{r}=mg

\frac{v^2}{r}=g

v=\sqrt{gr}

v=\sqrt{1450.4}

v=38.08\ m/s    

8 0
4 years ago
A battery with an emf of 12.0 V shows a terminal voltage of 11.7 V when operating in a circuit with two lightbulbs, each rated a
wariber [46]
<h2>Answer:</h2>

0.46Ω

<h2>Explanation:</h2>

The electromotive force (E) in the circuit is related to the terminal voltage(V), of the circuit and the internal resistance (r) of the battery as follows;

E = V + Ir                      --------------------(a)

Where;

I = current flowing through the circuit

But;

V = I x Rₓ                    ---------------------(b)

Where;

Rₓ = effective or total resistance in the circuit.

<em>First, let's calculate the effective resistance in the circuit:</em>

The effective resistance (Rₓ) in the circuit is the one due to the resistances in the two lightbulbs.

Let;

R₁ = resistance in the first bulb

R₂ = resistance in the second bulb

Since the two bulbs are both rated at 4.0W ( at 12.0V), their resistance values (R₁ and R₂) are the same and will be given by the power formula;

P = \frac{V^{2} }{R}

=> R = \frac{V^{2} }{P}             -------------------(ii)

Where;

P = Power of the bulb

V = voltage across the bulb

R = resistance of the bulb

To get R₁, equation (ii) can be written as;

R₁ = \frac{V^{2} }{P}    --------------------------------(iii)

Where;

V = 12.0V

P = 4.0W

Substitute these values into equation (iii) as follows;

R₁ = \frac{12.0^{2} }{4}

R₁ = \frac{144}{4}

R₁ = 36Ω

Following the same approach, to get R₂, equation (ii) can be written as;

R₂ = \frac{V^{2} }{P}    --------------------------------(iv)

Where;

V = 12.0V

P = 4.0W

Substitute these values into equation (iv) as follows;

R₂ = \frac{12.0^{2} }{4}

R₂ = \frac{144}{4}

R₂ = 36Ω

Now, since the bulbs are connected in parallel, the effective resistance (Rₓ) is given by;

\frac{1}{R_{X} } = \frac{1}{R_1} + \frac{1}{R_2}       -----------------(v)

Substitute the values of R₁ and R₂ into equation (v) as follows;

\frac{1}{R_X} = \frac{1}{36} + \frac{1}{36}

\frac{1}{R_X} = \frac{2}{36}

Rₓ = \frac{36}{2}

Rₓ = 18Ω

The effective resistance (Rₓ) is therefore, 18Ω

<em>Now calculate the current I, flowing in the circuit:</em>

Substitute the values of V = 11.7V and Rₓ = 18Ω into equation (b) as follows;

11.7 = I x 18

I = \frac{11.7}{18}

I = 0.65A

<em>Now calculate the battery's internal resistance:</em>

Substitute the values of E = 12.0, V = 11.7V and I = 0.65A  into equation (a) as follows;

12.0 = 11.7 + 0.65r

0.65r = 12.0 - 11.7

0.65r = 0.3

r = \frac{0.3}{0.65}

r = 0.46Ω

Therefore, the internal resistance of the battery is 0.46Ω

5 0
4 years ago
Read 2 more answers
Which option lists a form of kinetic energy followed by a form of potential
Artemon [7]

Answer:

D. Sound Energy, Magnetic energy

Explanation:

Sound energy is in motion, and Magnetic energy is about to be in motion.

6 0
3 years ago
Which of these statements is true about endothermic reactions, but not about exothermic reactions?
sashaice [31]
I think the correct answer from the choices listed above is the second option. For endothermic reactions, the reactants have less energy than the products. Which would mean that energy should be added to the reaction for it to proceed. Hope this answers the question.
4 0
3 years ago
Read 2 more answers
Other questions:
  • A cell membrane has a thickness of about 7 nm. How many cell membranes would it take to make a stack 3.4 in high?
    13·1 answer
  • Charges q1 and q2 exerts repulsive forces of 10N on each other what is the repulsive force when their separation is decreasing s
    5·1 answer
  • 100 meters toward the shore in 25 seconds
    6·1 answer
  • Which element will form an anion?<br><br> A. boron<br> B. iodine<br> C. calcium<br> D. potassium
    6·1 answer
  • A cylindrical metal rod has a resistance . If both its length and its diameter are quadrupled, its new resistance will be:______
    14·1 answer
  • A 1.5 V battery is connected to a 1,000 μF capacitor in series with a 150 Ω resistor. a. What is the maximum current that flows
    10·1 answer
  • What is a simple compositon?
    13·1 answer
  • A student in gym class swings from a rope and they are moving 5 m/s at the bottom of their swing. What is the height they reach
    11·1 answer
  • !! Offering 50 points !!
    11·2 answers
  • A simple pendulum has time period of 2s. It is called second pendulum. Fimd the length of second pendulum on earth and moon(gm=g
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!