Answer: 1.14 N
Explanation :
As any body submerged in a fluid, it receives an upward force equal to the weight of the fluid removed by the body, which can be expressed as follows:
Fb = δair . Vb . g = 1.29 kg/m3 . 4/3 π (0.294)3 m3. 9.8 m/s2
Fb = 1.34 N
In the downward direction, we have 2 external forces acting upon the balloon: gravity and the tension in the line, which sum must be equal to the buoyant force, as the balloon is at rest.
We can get the gravity force as follows:
Fg = (mb +mhe) g
The mass of helium can be calculated as the product of the density of the helium times the volume of the balloon (assumed to be a perfect sphere), as follows:
MHe = δHe . 4/3 π (0.294)3 m3 = 0.019 kg
Fg = (0.012 kg + 0.019 kg) . 9.8 m/s2 = 0.2 N
Equating both sides of Newton´s 2nd Law in the vertical direction:
T + Fg = Fb
T = Fb – Fg = 1.34 N – 0.2 N = 1.14 N
To solve this problem it is necessary to apply the continuity equations in the fluid and the kinematic equation for the description of the displacement, velocity and acceleration.
By definition the movement of the Fluid under the terms of Speed, acceleration and displacement is,

Where,
Velocity in each state
g= Gravity
h = Height
Our values are given as,



Replacing at the kinetic equation to find
we have,



Applying the concepts of continuity,

We need to find A_2 then,

So the cross sectional area of the water stream at a point 0.11 m below the faucet is



Therefore the cross-sectional area of the water stream at a point 0.11 m below the faucet is 
Answer:
The length of line is 78 cm or 0.78 m.
Explanation:
initial reading 2 mark
final reading 80 cm
The length of the line
= final reading - initial reading
= 80 - 2
= 78 cm
1 cm = 0.01 m
So, 78 cm = 0.78 m