Answer:
the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake
Explanation:
This problem can be solved using the kinematics relations, let's start by finding the final velocity of the acceleration period
v² = v₀² + 2 a₁ x
indicate that the initial velocity is zero
v² = 2 a₁ x
let's calculate
v =
v = 143.666 m / s
now for the second interval let's find the distance it takes to stop
v₂² = v² - 2 a₂ x₂
in this part the final velocity is zero (v₂ = 0)
0 = v² - 2 a₂ x₂
x₂ = v² / 2a₂
let's calculate
x₂ =
x₂ = 573 m
as the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake
I believe the answer is free electrons
(a) The velocity of the object on the x-axis is 6 m/s, while on the y-axis is 2 m/s, so the magnitude of its velocity is the resultant of the velocities on the two axes:

And so, the kinetic energy of the object is

(b) The new velocity is 8.00 m/s on the x-axis and 4.00 m/s on the y-axis, so the magnitude of the new velocity is

And so the new kinetic energy is

So, the work done on the object is the variation of kinetic energy of the object: