Answer:
The mole fraction of N₂ is 0.26.
Explanation:
The pressure exerted by a particular gas in a mixture is known as its partial pressure. So, Dalton's law states that the total pressure of a gas mixture is equal to the sum of the pressures that each gas would exert if it were alone:
PT = PA + PB
This relationship is due to the assumption that there are no attractive forces between the gases.
Dalton's partial pressure law can also be expressed in terms of the mole fraction of the gas in the mixture. The mole fraction is a dimensionless quantity that expresses the ratio of the number of moles of a component to the number of moles of all the components present.
So in a mixture of two or more gases, the partial pressure of gas A can be expressed as:
PA = XA * PT
In this case:
- PA= PN₂= 300 torr
- XA=XN₂= ?
- PT= 1.50 atm= 1140 torr (being 1 atm= 760 torr)
Replacing:
300 torr= XN₂*1140 torr
Solving:

XN₂= 0.26
<u><em>The mole fraction of N₂ is 0.26.</em></u>
Answer:
ability to combine with oxygen
Extensive hydrogen bonding.
It takes a lot of energy to break hydrogen bonds and turn liquid water into a gas, therefore the boiling point for water is high.
Using this equation, we can take 25/(1.0 + 19) and find that it is equal to 1.25 moles.
Answer:
Similarities: both state the mass of chemical species and they have the same numerical value
Differences: molecular mass refers to one single molecule and molar mass refers to one mole of a molecule
Explanation:
The molecular mass is the value of the mass of each molecule and it is measured in mass units (u). It is calculated adding the mass of each atom of the molecule.
The molar mass is the value of the mass of one mole of molecules, which means the mass of 6.022140857 × 10²³ molecules. The unit is g/mol.
For example, we can consider the methane molecule, which has the chemical formula of CH₄:
Molecular mass CH₄ = C mass + 4 x (H mass)
Molecular mass CH₄ = 12.01 + 4 x (1.01)
Molecular mass CH₄ = 16.05 u
Now to calculate the molar mass we multiply the value of the molecular mass by the Avogadro number and convert the units to g/mol:
Molar mass CH₄: 16.05 x
x 6.022140857 × 10²³ mol⁻¹
Molecular mass CH₄ = 16.05 g / mol