Julianne’s displacement from her origin is equal to 10.015 kilometers.
<u>Given the following data:</u>
- Distance B = 8.5 km, Northeast.
To calculate Julianne’s displacement from her origin:
<h3>How to calculate displacement.</h3>
We would denote the two (2) unit vectors along the East and Northeast directions by i and j respectively.
<u>Note:</u> Northeast is at angle of 45° with the East.
In terms of vectors, the distances becomes:
Distance A = 2i
![Distance\;B=8.5 [(cos 45i + sin 45j)]\\\\Distance\;B=(\frac{8.5}{\sqrt{2} } i \;+\;\frac{8.5}{\sqrt{2} } j)](https://tex.z-dn.net/?f=Distance%5C%3BB%3D8.5%20%5B%28cos%2045i%20%2B%20sin%2045j%29%5D%5C%5C%5C%5CDistance%5C%3BB%3D%28%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D%20i%20%5C%3B%2B%5C%3B%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D%20j%29)
<u>For the </u><u>resultant displacement</u><u>:</u>
![D^2 = [(2+\frac{8.5}{\sqrt{2} } )^2+ (\frac{8.5}{\sqrt{2} } )^2\\\\D =\sqrt{[(2+\frac{8.5}{\sqrt{2} } )^2+ (\frac{8.5}{\sqrt{2} } )^2} \\\\D=2+\frac{8.5}{\sqrt{2} } + \frac{8.5}{\sqrt{2} }](https://tex.z-dn.net/?f=D%5E2%20%3D%20%5B%282%2B%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D%20%29%5E2%2B%20%28%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D%20%29%5E2%5C%5C%5C%5CD%20%3D%5Csqrt%7B%5B%282%2B%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D%20%29%5E2%2B%20%28%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D%20%29%5E2%7D%20%5C%5C%5C%5CD%3D2%2B%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D%20%2B%20%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D)
D = 10.015 kilometers.
Read more on displacement here: brainly.com/question/13416288
Answer:
The frequency of the oscillations in terms of fo will be f2=fo/3
E xplanation:
T= ![2pie\frac sqrt {m}{k}](https://tex.z-dn.net/?f=%202pie%5Cfrac%20sqrt%20%7Bm%7D%7Bk%7D)
=1:3
⇒f2=fo\3
Here frequency f is inversely poportional to square root of mass m.
so the value of remainder of frequency f2 and fo is equal to 1:3.
⇒
= ![\frac sqrt{m1}[m2}](https://tex.z-dn.net/?f=%20%5Cfrac%20sqrt%7Bm1%7D%5Bm2%7D)
⇒
= 1:3
⇒f2=![\frac{fo} {3}](https://tex.z-dn.net/?f=%5Cfrac%7Bfo%7D%20%7B3%7D)
Blood cell : Eukaryotic cell
and
Bacteria : Prokaryotic cell.
Answer: a) 274.34 nm; b) 1.74 eV c) 1.74 V
Explanation: In order to solve this problem we have to consider the energy balance for the photoelectric effect on tungsten:
h*ν = Ek+W ; where h is the Planck constant, ek the kinetic energy of electrons and W the work funcion of the metal catode.
In order to calculate the cutoff wavelength we have to consider that Ek=0
in this case h*ν=W
(h*c)/λ=4.52 eV
λ= (h*c)/4.52 eV
λ= (1240 eV*nm)/(4.52 eV)=274.34 nm
From this h*ν = Ek+W; we can calculate the kinetic energy for a radiation wavelength of 198 nm
then we have
(h*c)/(λ)-W= Ek
Ek=(1240 eV*nm)/(198 nm)-4.52 eV=1.74 eV
Finally, if we want to stop these electrons we have to applied a stop potental equal to 1.74 V . At this potential the photo-current drop to zero. This potential is lower to the catode, so this acts to slow down the ejected electrons from the catode.
Answer:
![1.554\times 10^{32}\ \text{kg}](https://tex.z-dn.net/?f=1.554%5Ctimes%2010%5E%7B32%7D%5C%20%5Ctext%7Bkg%7D)
Explanation:
M = Mass of each star
T = Time period = 15.5 days
v = Orbital velocity = 230 km/s
G = Gravitational constant = ![6.674\times 10^{-11}\ \text{Nm}^2/\text{kg}^2](https://tex.z-dn.net/?f=6.674%5Ctimes%2010%5E%7B-11%7D%5C%20%5Ctext%7BNm%7D%5E2%2F%5Ctext%7Bkg%7D%5E2)
Radius of orbit is given by
![R=\dfrac{vT}{2\pi}](https://tex.z-dn.net/?f=R%3D%5Cdfrac%7BvT%7D%7B2%5Cpi%7D)
We have the relation
![\dfrac{Mv^2}{R}=\dfrac{GM^2}{(2R)^2}\\\Rightarrow M=\dfrac{4Rv^2}{G}\\\Rightarrow M=\dfrac{4\dfrac{vT}{2\pi}v^2}{G}\\\Rightarrow M=\dfrac{2v^3T}{\pi G}\\\Rightarrow M=\dfrac{2\times 230000^3\times 15.5\times 24\times 60\times 60}{\pi\times 6.674\times 10^{-11}}\\\Rightarrow M=1.554\times 10^{32}\ \text{kg}](https://tex.z-dn.net/?f=%5Cdfrac%7BMv%5E2%7D%7BR%7D%3D%5Cdfrac%7BGM%5E2%7D%7B%282R%29%5E2%7D%5C%5C%5CRightarrow%20M%3D%5Cdfrac%7B4Rv%5E2%7D%7BG%7D%5C%5C%5CRightarrow%20M%3D%5Cdfrac%7B4%5Cdfrac%7BvT%7D%7B2%5Cpi%7Dv%5E2%7D%7BG%7D%5C%5C%5CRightarrow%20M%3D%5Cdfrac%7B2v%5E3T%7D%7B%5Cpi%20G%7D%5C%5C%5CRightarrow%20M%3D%5Cdfrac%7B2%5Ctimes%20230000%5E3%5Ctimes%2015.5%5Ctimes%2024%5Ctimes%2060%5Ctimes%2060%7D%7B%5Cpi%5Ctimes%206.674%5Ctimes%2010%5E%7B-11%7D%7D%5C%5C%5CRightarrow%20M%3D1.554%5Ctimes%2010%5E%7B32%7D%5C%20%5Ctext%7Bkg%7D)
The mass of each star is ![1.554\times 10^{32}\ \text{kg}](https://tex.z-dn.net/?f=1.554%5Ctimes%2010%5E%7B32%7D%5C%20%5Ctext%7Bkg%7D)