Answer:
F = 1.047 10⁻² N
Explanation:
Let's use kinematics to find the angular acceleration
w = w₀ + α t
as for rest w₀ = 0
w = α t
α = w / t
let's reduce the magnitudes to the SI system
w = 1000 rev / min (2π rad/ 1 rev) (1 min/ 60s) = 104.72 rad / s
m = 1.00 g (1 kg / 1000 g) = 1,000 10⁻³ kg
r = 10.0 cm (1 m / 100 cm) = 0.100 m
let's calculate
α = 104.72 / 1
α = 104.72 rad / s²
angular and linear variables are related
a = α r
a = 104.72 0.100
a = 10.47 m / s²
finally we substitute in Newton's second law
F = 1 10⁻³ 10.47
F = 1.047 10⁻² N
complete question:
A child bounces a 60 g superball on the sidewalk. The velocity change of the superball is from 22 m/s downward to 15 m/s upward. If the contact time with the sidewalk is 1/800 s, what is the magnitude of the average force exerted on the superball by the sidewalk
Answer:
F = 1776 N
Explanation:
mass of ball = 60 g = 0.06 kg
velocity of downward direction = 22 m/s = v1
velocity of upward direction = 15 m/s = v2
Δt = 1/800 = 0.00125 s
Linear momentum of a particle with mass and velocity is the product of the mass and it velocity.
p = mv
When a particle move freely and interact with another system within a period of time and again move freely like in this scenario it has a definite change in momentum. This change is defined as Impulse .
I = pf − pi = ∆p
F = ∆p/∆t = I/∆t
let the upward velocity be the positive
Δp = mv2 - m(-v1)
Δp = mv2 - m(-v1)
Δp = m (v2 + v1)
Δp = 0.06( 15 + 22)
Δp = 0.06(37)
Δp = 2.22 kg m/s
∆t = 0.00125
F = ∆p/∆t
F = 2.22/0.00125
F = 1776 N
Answer:
The maximum emf generated in the coil is 60527.49 V
Explanation:
Given;
area of coil, A = 0.320 m²
angular frequency, f = 100 rev/s
magnetic field, B = 0.43 T
number of turns, N = 700 turns
The maximum emf generated in the coil is calculated as,
E = NBAω
where;
ω is the angular speed = 2πf
E = NBA(2πf)
Substitute in the given values and solve for E
E = 700 x 0.43 x 0.32 x 2π x 100
E = 60527.49 V
Therefore, the maximum emf generated in the coil is 60527.49 V
Answer:
208m
Explanation:
since the angle is with the ground which gives a horizontal component to the velocity = v(cos)30°
so the velocity equals 40(cos)30°= 34.64m/s
range(distance) = speed × time
34.64m/s × 6s = 207.8m = 208m
<h2>
Answer: Sensory adaptation</h2>
Explanation:
Sensory adaptation refers to the adjustment of the sensory capacity of a person following prolonged exposure to stimuli.
To better understand this, it is necessary to explain that environmental stimuli cause a change in the sensitivity of a person's sensory receptors. Then, depending on the type of environmental stimulus, the determined receptor will be stimulated (related to the five main senses of the human being: sight, smell, taste, touch and hearing).
However, when a person gets used to a stimulus, adaptation occurs. Therefore, <u>it will not respond to the stimulus in the same way as it did before.
</u>
A very common example is the relation with the smells (olfactory sense), because people get used quickly to the smells that surround them and then they stop "perceiving" the smell.