Answer:
<em>A solution containing 60 grams of nano3 completely dissolved in 50. Grams of water at 50°c is classified as being</em> <u>supersaturaded</u>
Explanation:
This question is about solubility.
Regarding solubility, the solutions may be classified as:
- Unsaturated: the concentration is below the maximum concentration permited at the given temperature.
- Saturated: the concentration is the maximum permitted at the given temperature, under normal conditions.
- Supersaturated: the concentration has overcome the maximum permitted at the given temperature. This is possible only under special conditions and is a very unstable state.
Each substance has its own, unique solubility properties. So, in order to tell the state of the solution you need to compare with either solubility tables, or solubility curves; or run you own experiments.
- In internet you can find the solubility curve of NaNO₃ showing the solubility for a wide range of temperatures.
- In such curve the solubility of NaNO₃ at 50°C is about 115 g of NaNO₃ per 100 g of water.
- Hence, do the proportion to determine the amount of solute that can be dissolved in 50 grams of water at 50°CÑ
115 g NaNO₃ / 100 g H₂O = x / 50 g H₂O ⇒ x = 57.5 g NaNO₃
- <u>Conclusion</u>: 50 grams of water can contain 57.5 g of NaNO₃ dissolved; so, <em>a solution containing 60 g of NaNO₃ completely dissolved in 50 grams of water is supersaturated.</em>
<em />
Answer: Magnets have a force which is known as no contact force. This force tries to attract the metallic objects near it, which makes it move.
Explanation:
Answer:
71.7 L
Explanation:
Using the ideal gas equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/Kmol)
T = temperature (K)
According to the information provided in this question;
P = 1 atm (STP)
V = ?
n = 3.2mol
T = 273K (STP)
Using PV = nRT
V = nRT/P
V = 3.2 × 0.0821 × 273/1
V = 71.7 L
545mm Hg in Kilopascals is 72.6607
I hope this helps you. Good luck stay safe, healthy and, happy!<3