“Don't hand that holier than thou line to me” is what the asymptote
said to the removable discontinuity.
The distance between the
curve and the line where it approaches zero as they tend to infinity is the line in the asymptote
of a curve. This is unusual for modern authors but in some
sources the requirement that the curve may not cross the line infinitely often
is included.
The point that does not fit the rest of the graph or is
undefined is called a removable discontinuity. By filling in a single
point, the removable discontinuity can be made connected.
Plug in the corresponding values into y = mx + b
8.18 in for y
1.31 in for m
17.2 in for b
8.18 = 1.31x + 17.2
Now bring 17.2 to the left side by subtracting 17.2 to both sides (what you do on one side you must do to the other). Since 17.2 is being added on the right side, subtraction (the opposite of addition) will cancel it out (make it zero) from the right side and bring it over to the left side.
8.18 - 17.2 = 1.31x
-9.02 = 1.31x
Then divide 1.31 to both sides to isolate x. Since 1.31 is being multiplied by x, division (the opposite of multiplication) will cancel 1.31 out (in this case it will make 1.31 one) from the right side and bring it over to the left side.
-9.02/1.31 = 1.31x/1.31
x ≈ -6.8855
x is roughly -6.89
Hope this helped!
~Just a girl in love with Shawn Mendes
Answer:
μ = 0.18
Explanation:
Let's use Newton's second Law, the coordinate system is horizontal and vertical
Before starting to move the box
Y axis
N-W = 0
N = W = mg
X axis
F -fr = 0
F = fr
The friction force has the formula
fr = μ N
fr = μ m g
At the limit point just before starting the movement
F = μ m g
μ = F / m g
calculate
μ = 34.8 / (19.8 9.8)
μ = 0.18
As we know the formula of kinetic energy is
here given that
KE = 150,000 J
mass = 120 kg
we can use this to find speed
So speed of above object is 50 m/s