its exothermic. exothermic means the reaction gives out heat. [exo meaning outside and thermic meaning heat] because its a combustion reaction, fire is there meaning lots of heat.
endothermic means it takes in heat. a good example is ammonium and water (NH3 +H20)
<span>most chemical reaction are exothermic</span>
B. We are in the cenzoic era so what previously had happen to cause the life we live today was a huge mass extinction.... hope this helps!!
Answer:
.
Start color: yellowish-green.
End color: dark purple.
Assumption: no other ion in the solution is colored.
Explanation:
In this reaction, chlorine gas
oxidizes iodine ions
to elemental iodide
. At the same time, the chlorine atoms are converted to chloride ions
.
Fluorine, chlorine, bromine, and iodine are all halogens. They are all found in the 17th column of the periodic table from the left. One similarity is that their anions are not colored. However, their elemental forms are typically colored. Besides, moving down the halogen column, the color becomes darker for each element.
Among the reactants of this reaction,
is colorless. If there's no other colored ion, only the yellowish-green hue of
would be visible. Hence the initial color of the reaction would be the yellowish-green color of
.
Similarly, among the products of this reaction,
is colorless. If there's no other colored ion, only the dark purple hue of
would be visible. Hence the initial color of the reaction would be the dark purple color of
.
Answer:
NH₃
Explanation:
mass H = 6.10 grams
mass N = 28.00 grams
mass cpd = (6.10 + 28.00)grams = 34.10 grams
%H/100wt = (6.10/34.10)100% = 17.9% w/w
%N/100wt = (28.00/34.1)100% = 82.1% w/w
%/100wt => grams/100wt => moles => ratio => reduce => emp ratio
%H/100wt = 17.9% w/w => 17.9g => (17.9/1)moles = 17.9 moles H
%N/100wt = 82.1% w/w => 82.1g => (82.1/14)moles = 5.9 moles N
Ratio N:H => 17.9 : 5.9
Reduce mole ratio (divide by smaller mole value) => 17.9/5.9 : 5.9/5.9
=> 3HY:1H empirical ratio => empirical formula NH₃ (ammonia)
[A]0= Initial concentration
t1/2= half life
[A]= final concentration
k= rate constant