Answer:
The electronengativity values of given elements is as follows.
Fluorine - 4
Chlorine -3
Bromine - 2.9
Iodine- 2.5
Explanation:
Electronegativity =consant (I.E-E.A)
The electron affinity and ionization energy values of the given elements is as follows.
(In attachment)
First we have to find the value of constant by using the fluorine atom to whom the electronengativity taken as "4".
<u>Fluorine:</u>
![4=constant[1678-(-327.8)]](https://tex.z-dn.net/?f=4%3Dconstant%5B1678-%28-327.8%29%5D)

By using this constant values we can find electronegatvity values of remaining elements.
<u>Chlorine:</u>
![Electronegativity=0.0019942168[1255+348.7]=3.1980\sim 3](https://tex.z-dn.net/?f=Electronegativity%3D0.0019942168%5B1255%2B348.7%5D%3D3.1980%5Csim%203)
Therefore, electronegativity of chlorine is 3.
<u>Bromine:</u>
![Electronegativity=0.0019942168[1138+324.5]=2.91\sim 2.9](https://tex.z-dn.net/?f=Electronegativity%3D0.0019942168%5B1138%2B324.5%5D%3D2.91%5Csim%202.9)
Therefore, electronegativity of bromine is 2.9.
<u>Iodine:</u>
![Electronegativity=0.0019942168[1007+295.7]=2.59\sim 2.5](https://tex.z-dn.net/?f=Electronegativity%3D0.0019942168%5B1007%2B295.7%5D%3D2.59%5Csim%202.5)
Therefore, electronegativity of iodine is 2.5.
Answer:
D. Partial pressure
Explanation:
Partial pressure is the individual pressure exerted by each gas present in a gaseous mixture. As he is measuring the pressure of each gas in the atmosphere separately, so PARTIAL PRESSURE is the exact term for his measurement.
One of the most powerful laws in physics is the law of momentum conservation. ... For a collision occurring between object 1 and object 2 in an isolated system, the total momentum of the two objects before the collision is equal to the total momentum of the two objects after the collision.
The different is that the galvanic cell converts chemical energy into the electrical energy and the electrolytic cell coverts electrical energy into chemical energy
Yes they do. But a very small kinetic energy. They vibrate in fixed positions