The correct answers from the choices are:
a. Reduce inflammation locally
b. Antagonize H1 receptors
c. May be administered orally
<span>d. Are systemically distributed
</span><span>Antihistamines are drugs that are H1 antagonists or blockers, may be administered orally, are distributed systemically, and do not directly reduce nasal congestion.</span>
Elements Y and elements Z would have similar properties due to the fact that they both posses the same number of valence electrons. They both have a single valence electron that determines the corresponding elements bonding properties and the fact that it can either donate 1 valence electron to produce an ion that would be attracted to another atom, that is also an ion. Assuming that these elements are group 1 elements, they do not undergo in covalent bonding.
Answer:
<h2>The first thing to do here is to use the molarity and the volume of the initial solution to figure out how many grams of copper(II) chloride it contains.</h2><h2 /><h2>133</h2><h2>mL solution</h2><h2>⋅</h2><h2>1</h2><h2>L</h2><h2>10</h2><h2>3</h2><h2>mL</h2><h2>⋅</h2><h2>7.90 moles CuCl</h2><h2>2</h2><h2>1</h2><h2>L solution</h2><h2>=</h2><h2>1.051 moles CuCl</h2><h2>2</h2><h2 /><h2>To convert this to grams, use the compound's molar mass</h2><h2 /><h2>1.051</h2><h2>moles CuCl</h2><h2>2</h2><h2>⋅</h2><h2>134.45 g</h2><h2>1</h2><h2>mole CuCl</h2><h2>2</h2><h2>=</h2><h2>141.31 g CuCl</h2><h2>2</h2><h2 /><h2>Now, you know that the diluted solution must contain </h2><h2>4.49 g</h2><h2> of copper(II) chloride. As you know, when you dilute a solution, you increase the amount of solvent while keeping the amount of solute constant.</h2><h2 /><h2>This means that you must figure out what volume of the initial solution will contain </h2><h2>4.49 g</h2><h2> of copper(II) chloride, the solute.</h2><h2 /><h2>4.49</h2><h2>g</h2><h2>⋅</h2><h2>133 mL solution</h2><h2>141.32</h2><h2>g</h2><h2>=</h2><h2>4.23 mL solution</h2><h2>−−−−−−−−−−−−−− </h2><h2 /><h2>The answer is rounded to three sig figs.</h2><h2 /><h2>You can thus say that when you dilute </h2><h2>4.23 mL</h2><h2> of </h2><h2>7.90 M</h2><h2> copper(II) chloride solution to a total volume of </h2><h2>51.5 mL</h2><h2> , you will have a solution that contains </h2><h2>4.49 g</h2><h2> of copper(II) chloride.</h2>
Cold, salty water is dense and sinks to the bottom of the ocean while warm water is less dense and remains on the surface. ... Water gets colder with depth because cold, salty ocean water sinks to the bottom of the ocean basins below the less dense warmer water near the surface. In other words it takes a lot of energy to heat water. The specific heat of land is much lower than water. It varies a little by soil type, but it takes a lot less energy to raise the temperature of the same amount of land as water.