Answer:
The third drop is 0.26m
Explanation:
The drop 1 impacts at time T is given by:
T=sqrt(2h/g)
T= sqrt[(2×2.4)/9.8]
T= sqrt(4.8/9.8)
T= sqrt(0.4898)
T= 0.70seconds
4th drops starts at dT=0.70/3= 0.23seconds
The interval between the drops is 0.23seconds
Third drop will fall at t= 0.23
h=1/2gt^2
h= 1/2×9.81×(0.23)^2
h= 0.26m
Answer:
The correct option is;
The atoms and molecules of the liquid water are moving, while the atoms and molecules of the glass are not moving
Explanation:
Matter that exist in the liquid or gaseous state consist of molecules that move freely about in the entire containing medium for gas, while the molecules move freely in the portion of the container occupied by the fluid in the case of liquid fluids
However, the molecules of a solid are fixed within the current shape of the solid and are only free to vibrate within a fixed location and the allow the passage of subatomic particles such as electrons
As such, the glass cup being a solid, consists of molecules fixed in space, while the liquid water consists of molecules which can translate within the portion of the volume of the glass filled with the water.
Answer: Dark matter.
Explanation: Hope it helps :)
5.55 mol H2O
Explanation:
Water has a molar mass of 18.01528 g/mol. We can then calculate the number of moles of water as
100 g H20 × (1 mol H2O/18.01528 g H20)
= 5.55 mol H2O
Answer:
the person will be in the shore at 10.73 minutes after launch the shoe.
Explanation:
For this we will use the law of the lineal momentum.

Also,
L = MV
where M is de mass and V the velocity.
replacing,

wher Mi y Vi are the initial mass and velocity, Mfp y Vfp are the final mass and velocity of the person and Mfz y Vfz are the final mass and velocity of the shoe.
so, we will take the direction where be launched the shoe as negative. then:
(70)(0) = (70-0.175)(
) + (0.175)(-3.2m/s)
solving for
,
= 
= 0.008m/s
for know when the person will be in the shore we will use the rule of three as:
1 second -------------- 0.008m
t seconds-------------- 5.15m
solving for t,
t = 5.15m/0.008m
t = 643.75 seconds = 10.73 minutes