If the number of rats decrease, snakes would look for another prey.
Answer:
After increasing the volume, we have 1.81 moles of hydrogen gas in the container
Explanation:
Step 1: Data given
Number of moles hydrogen gas (H2) = 1.24 moles
Volume of hydrogen gas (H2° = 27.8 L
The final volume is increas to 40.6 L
Step 2: Calculate the new number of moles
V1/n1 = V2/n2
⇒with V1 = the initial volume = 27.8 L
⇒with n1 = the initial number of moles H2 = 1.24 moles
⇒with V2 = the final volume = 40.6 L
⇒with n2 = the new number of moles = TO BE DETERMINED
27.8L / 1.24 moles = 40.6 L / n2
n2 = 40.6 / (27.8/1.24)
n2= 1.81 moles
After increasing the volume, we have 1.81 moles of hydrogen gas in the container
Answer:
12.9 g O₂
Explanation:
To find the mass of oxygen gas produced, you need to (1) convert grams KClO₃ to moles KClO₃ (via molar mass from periodic table values), then (2) convert moles KClO₃ to moles O₂ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles O₂ to grams O₂ (via molar mass). It is important to arrange the conversions/ratios in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 3 sig figs to match the given value (33.0 g).
Molar Mass (KClO₃): 39.098 g/mol + 35.45 g/mol + 3(15.998 g/mol)
Molar Mass (KClO₃): 122.542 g/mol
2 KClO₃ ---> 2 KCl + 3 O₂
Molar Mass (O₂): 2(15.998 g/mol)
Molar Mass (O₂): 31.996 g/mol
33.0 g KClO₃ 1 mole 3 moles O₂ 31.996 g
-------------------- x ------------------- x ----------------------- x ------------------ =
122.542 g 2 moles KClO₃ 1 mole
= 12.9 g O₂
The number of electrons in a completely filled second shell of an atom is 8.
Hope this helped.