Answer:
The specific heat of iron is 0.45 J/g.°C
Explanation:
The amount of heat absorbed by the metal is given by:
heat = m x Sh x ΔT
From the data, we have:
heat = 180.8 J
mass = m = 22.44 g
ΔT = Final temperature - Initial temperature = 39.0°C - 21.1 °C = 17.9°C
Thus, we calculate the specific heat of iron (Sh) as follows:
Sh = heat/(m x ΔT) = (180.8 J)/(22.44 g x 17.9°C) = 0.45 J/g.°C
The cubic unit cell this metal crystallize as is BCC structure .
<h3>
What is unit cell ?</h3>
The structure of a crystalline solid, whether a metal or not, is best described by considering its simplest repeating unit, which is referred to as its unit cell.
The unit cell consists of lattice points that represent the locations of atoms or ions.
The entire structure then consists of this unit cell repeating in three dimensions

n= 2
Hence our assumption was correct
It is a BCC structure .
Therefore the cubic unit cell this metal crystallize as is BCC structure .
To know more about unit cell
brainly.com/question/13110055
#SPJ1
Answer:
(C) H3O+(aq) + C2H3O2−(aq) -> HC2H3O2(aq) + H2O(l)
Explanation:
A buffer is a solution of a weak acid and its salt. It mitigates against changes in acidity or alkalinity of a system. A buffer maintains the pH at a constant value by switching the equilibrium concentration of the conjugate acid or conjugate base respectively.
Addition if an acid shifts the equilibrium position towards the conjugate acid side while addition of a base shifts the equilibrium position towards the conjugate base side.