Answer: The trip takes 
Explanation:
Velocity
is the variation of the position of a body (distance traveled
) with time
:
In this case, the car travels a distance
at a velocity
and we need to find the time it takes the trip.
Isolating
:

Finally:

Answer:
A. The sound wave will reflect off Buildings and automobiles.
Explanation:
This is because the sound waves would more likely propagate through diffraction through buildings and transmission through the air. It is also more likely to be absorbed by buildings than for multiple reflections to occur off buildings and automobiles. In the process of reflection, these materials would absorb the sound energy thereby reducing its ability to reflect.
Answer:
No, there won't be a collision.
Explanation:
We will use the constant acceleration formulas to calculate,
v = u + a*t
0 = 25 + (-0.1)*t
t = 250 seconds (the time taken for the passenger train to stop)
v^2 = u^2 + 2*a*s
0 = (25)^2 + 2*(-0.1)*s
s = 3125 m (distance traveled by passenger train to stop)
If the distance traveled by freight train in 250 seconds is less than (3125-200=2925 m) than the collision will occur
Speed*time = distance
Distance = (15)*(250)
Distance = 3750 m
As the distance is way more, there won’t be a collision
What do we know that might help here ?
-- Temperature of a gas is actually the average kinetic energy of its molecules.
-- When something moves faster, its kinetic energy increases.
Knowing just these little factoids, we realize that as a gas gets hotter, the average speed of its molecules increases.
That's exactly what Graph #1 shows.
How about the other graphs ?
-- Graph #3 says that as the temperature goes up, the molecules' speed DEcreases. That can't be right.
-- Graph #4 says that as the temperature goes up, the molecules' speed doesn't change at all. That can't be right.
-- Graph #2 says that after the gas reaches some temperature and you heat it hotter than that, the speed of the molecules starts going DOWN. That can't be right.
--
Answer:
Lol, you should do Nate, Bobby, Cindy, Joe, and Beth
Jk, if you want to be series and probably not fail go for these:
If it wants types of small/average stars, then go with
Small star names:
OGLE-TR-122B
Gliese 229 B
TRAPPIST-1
Teegarden's Star
Luyten 726-8 (A and B)
Proxima Centauri
Wolf 359 111400
Ross 248
Barnard's Star
CM Draconis B
Ross 154 167000
CM Draconis A
Kapteyn's Star