Answer:
it is the objects mass, I learned this last semester
D. All of the answers are true
Answer:
The new volume of the balloon is 38.5 L
Explanation:
Step 1: Data given
Volume at the start = V1 = 35.0 L
Temperature at the start = T1 = 303 Kelvin
Volume by 3pm = TO BE DETERMINED
Temperature by 3pm = 333 Kelvin
<u>Step 2: </u>Calculate the new volume
Charles' gas law says
V1/T1 = V2/T2
V
1 is the initial volume and T1 is the initial temperature
V2 is the final volume and T2 is the final temperature
35 L / 303 Kelvin = V2 / 333 Kelvin
V2 = 35L * 333 Kelvin / 303 Kelvin
V2 = 38.47L ≈ 38.5 L
The new volume of the balloon is 38.5 L
The type of the bond is present Na₃PO₄ is the ionic bond. the Na₃PO₄ is the ionic compound. yes the Na₃PO₄ is the polyatomic ion.
The Na₃PO₄ is Na⁺ and PO₄³⁻. the phosphorus is the non metal and the oxygen atom is the non metal. the non meta and non meta form the covalent or molecular bond. the bond between the PO₄³⁻ bond is the covalent bond but the overall present in the Na₃PO₄ is the ionic bond . the bons in between the Na⁺ and PO₄³⁻ is the the ionic bond. the PO₄³⁻ id the polyatomic ion .
The bond between the positively charged ion and the negatively charged ion are called as the ionic bond and the compound form is the ionic compound.
To learn more about ionic bond here
brainly.com/question/29005103
#SPJ4
Answer:
N2O2(g) +O2(g) ===> 2NO2(g)
Explanation:
For a nonelementary reaction, the reaction equation is described as the sum of all the steps involved. All these steps constitute the reaction mechanism. Each step in the mechanism is an elementary reaction. The rate law of the overall reaction involves the rate determining step (slowest step) in the reaction sequence.
Now look at the overall reaction 2NO(g) + O2(g) ---------> 2NO2(g)
The two steps in the mechanism are
2NO(g) --------->N2O2(g) (fast)
N2O2(g) +O2(g) -------> 2NO2(g) (slow)
Summing all the steps and cancelling out the intermediate N2O2(g), we obtain the reaction equation;
2NO(g) + O2(g) ---------> 2NO2(g)
Hence the answer.