Answer:
Explanation:
Well, obviously a molecule with polar bonds can be polar in itself. It's like saying I am an atheltic person who can just reach the basketball rim with my head and also I can dunk.
But if the question is how can a molecule that in non-polar have polar bonds, well, its because the polar bonds' dipole cancels each other out. It's like a tight rope. If a person pulls in one direction, it intuitively, the rope would go in that direction. However, if a person pulls in the other direction with the same amount of force, the rope stays still. This is the same case. Although molecules can have different electronegativities, the pull of electrons in one direction is cancelled out by a pull in the opposite direction, making the net dipole 0.
This is common for main VSERP shaped molecules like linear, trigonal planar, tetrahedral, trigonal bipyramidal, and octahedral.
<span>graduated cylinder is the answer</span>
<u>Answer:</u> The
for the reaction is -1835 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)
( × 4)
(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[4\times (-\Delta H_1)]+[1\times \Delta H_2]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B4%5Ctimes%20%28-%5CDelta%20H_1%29%5D%2B%5B1%5Ctimes%20%5CDelta%20H_2%5D)
Putting values in above equation, we get:

Hence, the
for the reaction is -1835 kJ.
Answer:
yes
Explanation:
is that is the alteration of a planet on its orbit around the sun depends upon the mass of the Sun and the inverse square of the planets distance from the Sun. As a planet moves further away in its orbit around the Sun, the gravitational force exerted by the sun on the planet decreases
I think it is B
Explained answer:
Glaciers dissolve and melt because they are made out of ice