The study of all chemicals containing carbon is organic chemistry.
Answer:
Explanation:
diffusion has already occurred
9ml will be given for the case of dosage calculation order: 3 mg available: 2 mg per 6 ml
Conversion factors are necessary for dosage calculation, such as when translating from pounds to kilograms or liters to milliliters. This approach, which is straightforward in design, enables physicians to deal with different units of measurement and convert factors to arrive at the solution.
dosage calculation techniques serve as a second or third check on the accuracy of the previous computation techniques. Dimensional Analysis, Ratio Proportion, and Formula or Desired Over Have Method are the three main approaches for dosage calculation. dosage calculations are frequently prescribed and labeled based on their weight or, for solutions, their strength, which is the amount of weight dissolved or suspended in a given volume.
To learn more about dosage calculation please visit -
brainly.com/question/12720845
#SPJ4
Answer:
The effect is the increasing of the molar concentration.
Explanation:
When you standarize a solution of NaOH with KHP you are establish its molar concentration (That is the amount of moles of NaOH per liter of solution).
If you evaporated some water of the solution, you are increasing its concentration because volume is decreasing doing the amount of moles per liter increasing.
Answer:
The answer to this is
The column of water in meters that can be supported by standard atmospheric pressure is 10.336 meters
Explanation:
To solve this we first list out the variables thus
Density of the water = 1.00 g/mL =1000 kg/m³
density of mercury = 13.6 g/mL = 13600 kg/m³
Standard atmospheric pressure = 760 mmHg or 101.325 kilopascals
Therefore from the equation for denstity we have
Density = mass/volume
Pressure = Force/Area and for a column of water, pressure = Density × gravity×height
Therefore where standard atmospheric pressure = 760 mmHg we have for Standard tmospheric pressure= 13600 kg/m³ × 9.81 m/s² × 0.76 m = 101396.16 Pa
This value of pressure should be supported by the column of water as follows
Pressure = 101396.16 Pa = kg/m³×9.81 m/s² ×h
∴
= 10.336 meters
The column of water in meters that can be supported by standard atmospheric pressure is 10.336 meters