Answer:
B: They are the results of many experiments over a long period of time.
Explanation:
Answer:
- <em>The solution that has the highest concentration of hydroxide ions is </em><u>d. pH = 12.59.</u>
Explanation:
You can solve this question using just some chemical facts:
- pH is a measure of acidity or alkalinity: the higher the pH the lower the acidity and the higher the alkalinity.
- The higher the concentration of hydroxide ions the lower the acidity or the higher the alkalinity of the solution, this is the higher the pH.
Hence, since you are asked to state the solution with the highest concentration of hydroxide ions, you just pick the highest pH. This is the option d, pH = 12.59.
These mathematical relations are used to find the exact concentrations of hydroxide ions:
- pH + pOH = 14 ⇒ pOH = 14 - pH
- pOH = - log [OH⁻] ⇒
![[OH^-]=10^{-pOH}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-pOH%7D)
Then, you can follow these calculations:
Solution pH pOH [OH⁻]
a. 3.21 14 - 3.21 = 10.79 antilogarithm of 10.79 = 1.6 × 10⁻¹¹
b. 7.00 14 - 7.00 = 7.00 antilogarithm of 7.00 = 10⁻⁷
c. 7.93 14 - 7.93 = 6.07 antilogarithm of 6.07 = 8.5 × 10⁻⁷
d. 12.59 14 - 12.59 = 1.41 antilogarithm of 1.41 = 0.039
e. 9.82 14 - 9.82 = 4.18 antilogarithm of 4.18 = 6.6 × 10⁻⁵
From which you see that the highest concentration of hydroxide ions is for pH = 12.59.
So potassium is more reactive than lithium because the outer electron of a potassium atom is further from its nucleus than the outer electron of a lithium atom. Hope this answers the question. Have a nice day. Feel free to ask more questions.
<span>The reason it will be 7 for some titrations is that when you titrates a strong acid with a strong base for example HCl and NaOH the salt formed is conjugate base of strong acid and will be a very weak base
That means that it cannot produce any OH^-1 and all the H+ has been converted to water.The only source of H+ or OH is water with a Ka of 10^-14 so the pH = -log [H+]=-log 10^-7 = 7
second reason is
When you titrates a weak acid with strong base at equivalence point
only a water solution of the conjugate base exists
CH3COOH + NaOH ----- Na+ CH3COO^-1 + H2O
Since the conjugate base is the conjugate base of a weak acid it will hydrolyze in water like so
for instance Na+ CH3COO^-1 + HCl---- CH3COOH + NaCl the equivalence point will be way BELOW 7 and in the case of above will be less than 5. So pH of 7 at equivalence point is only reached in strong acid strong base titrations.
hope this helps</span>
Answer:
Potassium
1s2 2s2 2p6 3s2 3p6 4s1
Explanation:
The atom having only one electron its outermost shell must belong to an element in group one of the periodic table.
Having noted that, we proceed to find out what element in group one that has the atom just described in the question.
That atom must belong to an element in the fourth period. The only group 1 element in the fourth period is potassium.
The electron configuration of potassium is;
1s2 2s2 2p6 3s2 3p6 4s1