Answer:
Fnet = F√2
Fnet = kq²/r² √2
Explanation:
A exerts a force F on B, and C exerts an equal force F on B perpendicular to that. The net force can be found with Pythagorean theorem:
Fnet = √(F² + F²)
Fnet = F√2
The force between two charges particles is:
F = k q₁ q₂ / r²
where
k is Coulomb's constant, q₁ and q₂ are the charges, and r is the distance between the charges.
If we say the charge of each particle is q, then:
F = kq²/r²
Substituting:
Fnet = kq²/r² √2
Answer:
2.78 m
Explanation:
At the peak, the velocity is 0.
Given:
a = -1.6 m/s²
v₀ = 2.98 m/s
v = 0 m/s
x₀ = 0 m
Find:
x
v² = v₀² + 2a(x - x₀)
(0 m/s)² = (2.98 m/s)² + 2(-1.6 m/s²) (x - 0 m)
x = 2.775 m
Rounded to 3 sig-figs, the astronaut halloweener reaches a maximum height of 2.78 meters.
Explanation:
Joule (J) is the MKS unit of energy, equal to the force of one Newton acting through one meter.
Answer: C. Steel
Explanation: When a sound wave travels through a solid body consisting
of an elastic material, the velocity of the wave is relatively
high. For instance, the velocity of a sound wave traveling
through steel (which is almost perfectly elastic) is about
5,060 meters per second. On the other hand, the velocity
of a sound wave traveling through an inelastic solid is
relatively low. So, for example, the velocity of a sound wave
traveling through lead (which is inelastic) is approximately
1,402 meters per second.
Metal detectors work by transmitting an electromagnetic field from the search coil into the ground. Any metal objects (targets) within the electromagnetic field will become energised and retransmit an electromagnetic field of their own.