Answer:
At equilibrium:
[H2] = 0.005 M
[Br2] = 0.105 M
[HBr] = 0.189 M
Explanation:
H2(g) + Br2(g) ⇄ 2HBr
an "x" value will be used from reactant to produced "2x"
so at equilibrium:
[H2] = 0.1 - x
[Br2] = 0.2 - x
[HBr] = 2x
we know that Kc=[HBr]²/[H2][Br2]
Thus 62.5 = (2x)²/(0.1-x)(0.2-x)
this generate a quadratic equation: 58.5x² - 18.75x + 1.25 = 0
the x₁ = 0.23 x₂ = 0.09457
we pick 0.09457 because the two reactants can not make more than what they have. x₁ is higher than both initial reactant concentration
Then we substitute the "x₂" value at equilibrium:
[H2] = 0.1-0.09457 = 0.005 M
[Br2] = 0.2-0.09457 = 0.105 M
[HBr] = 2*0.09457 = 0.189 M
Answer:
The answer is true
Explanation:
Products in chemical reactions are rearranged during the reaction, the atoms end up in different combinations in the products. This makes the product new substances that are chemically different than the reactants
True, False , and I think the last one is true
Answer:
Percentage of copper = 88%
Explanation:
Given data:
Mass of copper = 51.2 g
Mass of tin = 6.84 g
Percentage of copper = ?
Solution:
Formula:
Percentage of copper = mass of copper / total mass × 100
Now we will determine the total mass:
Total mass = mass of copper + mass of tin
Total mass = 51.2 g + 6.84 g
Total mass = 58.04 g
Now we will calculate the percentage of copper.
Percentage of copper = 51.2 g / 58.04 g × 100
Percentage of copper = 0.88 × 100
Percentage of copper = 88%