Imagine A is a Heterogeneous mixture because it a mixture composition that does not stay the same throughout the mixture.
Imagine B is the Homogeneous mixture because it has no changes or irregularities
Uhhhhhhhhhh................
For starters, I would get the same height for each paper, such as a counter top. Then, I would make said paper. You would use a timer of course, maybe even something like a speed gun to calculate the speed as said paper falls. You would push each paper off the counter top and calculate the speed for each paper. This is the easiest way to prove your hypothesis.
Solution :
For the reaction :

we have
![$Ka = \frac{[\text{Tris}^- \times H_3O]}{\text{Tris}^+}$](https://tex.z-dn.net/?f=%24Ka%20%3D%20%5Cfrac%7B%5B%5Ctext%7BTris%7D%5E-%20%5Ctimes%20H_3O%5D%7D%7B%5Ctext%7BTris%7D%5E%2B%7D%24)


Clearing
, we have 
So to reach
, one must have the
concentration of the :
![$\text{[OH}^-]=10^{-pOH} = 6.31 \times 10^{-7} \text{ moles of base}$](https://tex.z-dn.net/?f=%24%5Ctext%7B%5BOH%7D%5E-%5D%3D10%5E%7B-pOH%7D%20%3D%206.31%20%5Ctimes%2010%5E%7B-7%7D%20%5Ctext%7B%20moles%20of%20base%7D%24)
So we can add enough of 1 M NaOH in order to neutralize the acid that is calculated above and also adding the calculated base.


Volume NaOH 
Tris mass 
Now to prepare the said solution we must mix:
gauge to 1000 mL with water.
Answer:
V = 57.39 L
Explanation:
Given that,
Temperature, T = 300 K
Pressure, P = 0.987 atm
No. of moles of Ne, n = 2.30 mol
We need to find the volume of Ne. We know that, the ideal gas law is as follows :
PV = nRT
Where
P is pressure and R is gas constant

So, the volume of the Ne is 57.39 L.