Answer:
a)
, b) 
Explanation:
The magnitude of torque is a form of moment, that is, a product of force and lever arm (distance), and force is the product of mass and acceleration for rotating systems with constant mass. That is:



Where
is the angular acceleration, which is constant as torque is constant. Angular deceleration experimented by the unpowered flywheel is:


Now, angular velocities of the unpowered flywheel at 50 seconds and 100 seconds are, respectively:
a) t = 50 s.


b) t = 100 s.
Given that friction is of reactive nature. Frictional torque works on the unpowered flywheel until angular velocity is reduced to zero, whose instant is:


Since
, then the angular velocity is equal to zero. Therefore:

Im going to tell you what to do but not the result. So pay close attention: the first thing you need to do is convert miles/h to m/s. Then for the part a) <span>divide the final velocity by the initial velocity. That will give you the amount of it will take to accelerate to the final velocity.Now for the part b you </span>use the formula v=vo+at. I hope this can help you
Answer:
32000 N
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 40 m/s
Distance (s) = 10 m
Final velocity (v) = 0 m/s
Mass (m) of car = 400 Kg
Force (F) =?
Next, we shall determine the acceleration of the the car. This can be obtained as follow:
Initial velocity (u) = 40 m/s
Distance (s) = 10 m
Final velocity (v) = 0 m/s
Acceleration (a) =?
v² = u² + 2as
0² = 40² + (2 × a × 10)
0 = 1600 + 20a
Collect like terms
0 – 1600 = 20a
–1600 = 20a
Divide both side by –1600
a = –1600 / 20
a = –80 m/s²
The negative sign indicate that the car is decelerating i.e coming to rest.
Finally, we shall determine the force needed to stop the car. This can be obtained as follow:
Mass (m) of car = 400 Kg
Acceleration (a) = –80 m/s²
Force (F) =?
F = ma
F = 400 × –80
F = – 32000 N
NOTE: The negative sign indicate that the force is in opposite direction to the motion of the car.
Answer:
<h3>Newton's 2nd law states acceleration is proportional to the net force acting on an object. The net force is the vector sum of all the forces applied to the object. ... In this case the acceleration (slowing down) of the puck is proportional to the amount of friction.</h3>
Explanation:
<h3>mark as brainliast</h3>
Consider the upward direction of motion as positive and downward direction of motion as negative.
a = acceleration due to gravity in downward direction = - 9.8 
v₀ = initial velocity of rock in upward direction = ?
v = final velocity of rock at the highest point = 0 
t = time to reach the maximum height = 4.2 sec
Using the kinematics equation
v = v₀ + a t
inserting the values
0 = v₀ + (- 9.8) (4.2)
v₀ = 41.2 