Answer:
a) > x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
b) 
And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10
Explanation:
Part a
For this case we have the following data:
x: 1,2,3,4,5
y: 1.9,3.5,3.7,5.1, 6
For this case we can use the following R code:
> x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
Part b
For this case we have the following trend equation given:

And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10
Answer:
total surface area is 432
Explanation:
Given data
base = 6
diagonals = 8
altitude = 12
to find out
total surface area
solution
we know total surface area of prism is
total surface area = lateral surface area + 2base area ..............1
so
first we calculate base perimeter i.e = 2 length + 2 width
so perimeter = 2(8) + 2(6) = 25
and area = length * width = 8*6 = 48
so lateral surface area is perimeter * height i.e
lateral surface area = 28* 12
lateral surface area = 336
put this value in equation 1 we get
total surface area = lateral surface area + 2base area
total surface area = 336 + 2(48)
total surface area is 432
The maximum value of θ of such the ropes (with a maximum tension of 5,479 N) will be able to support the beam without snapping is:

We can apply the first Newton's law in x and y-direction.
If we do a free body diagram of the system we will have:
x-direction
All the forces acting in this direction are:
(1)
Where:
- T(1) is the tension due to the rope 1
- T(2) is the tension due to the rope 2
Here we just conclude that T(1) = T(2)
y-direction
The forces in this direction are:
(2)
Here W is the weight of the steel beam.
We equal it to zero because we need to find the maximum angle at which the ropes will be able to support the beam without snapping.
Knowing that T(1) = T(2) and W = mg, we have:



T(1) must be equal to 5479 N, so we have:


Therefore, the maximum angle allowed is θ = 37.01°.
You can learn more about tension here:
brainly.com/question/12797227
I hope it helps you!
The statement shows a case of rotational motion, in which the disc <em>decelerates</em> at <em>constant</em> rate.
i) The angular acceleration of the disc (
), in revolutions per square second, is found by the following kinematic formula:
(1)
Where:
- Initial angular speed, in revolutions per second.
- Final angular speed, in revolutions per second.
- Time, in seconds.
If we know that
,
y
, then the angular acceleration of the disc is:


The angular acceleration of the disc is
radians per square second.
ii) The number of rotations that the disk makes before it stops (
), in revolutions, is determined by the following formula:
(2)
If we know that
,
y
, then the number of rotations done by the disc is:

The disc makes 3.125 revolutions before it stops.
We kindly invite to check this question on rotational motion: brainly.com/question/23933120