Does it have to be that exact word. cause it is just another term for psuedopodium
Answer:
C True. they rise and fall in a circular motion
Explanation:
The movement of water waves in the sea is described by a simple harmonic movement where the water droplets, which are the material particles of the movement oscillate up and down and the wave that is the energy of the movement travels perpendicular to it.
With this let's review the claims
A False
B False
C True.
D False
Answer:
C. melting
option C is correct answer.
Potential energy =
(mass) x (gravity) x (height above the reference level) .
Relative to the bottom of the cliff, the potential energy
at the top of the cliff is
(25kg) x (9.8 m/s²) x (30 meters)
= (25 x 9.8 x 30) kg-m²/s²
= 7,350 joules .
Kinetic energy = (1/2) x (mass) x (speed²)
The rock's kinetic energy at the bottom is
the same as its potential energy at the top.
7,350 joules = (1/2) x (25 kg) x (speed²)
Divide each side
by 12.5kg : 7,350 joules/12.5 kg = speed²
7,350 kg-m²/s² / 12.5kg = speed²
(7,350 / 12.5) m²/s² = speed²
588 m²/s² = speed²
Take the square root
of each side:
Speed = √(588 m²/s²)
= 24.248... m/s (rounded)
Answer:
37.7m/s: principle of conservation of momentum
Explanation:
The principle to make use of is the principle of conservation of momentum which States that the sum of momentum of bodies before collision is equal to the sum of momentum of bodies after collision. This bodies will move with the same velocity after collision.
Momentum = Mass × velocity
For car of mass 2200kg moving with velocity 33m/s:
Momentum of car before collision = 2200×33
= 72,600kgm/s
For the truck of mass 4500kg;
Momentum = 4500 ×(22-(-18)
= 4500×40
= 180000kgm/s
After collision, their momentum is:
Momentum after collision = (2200+4500)v
= 6700v
Using the principle above to get the common velocity v we have
72600+180000 = 6700v
252600 = 6700v
v = 252600/6700
v = 37.7m/s