1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marizza181 [45]
3 years ago
6

Guys can you please help me real quick with this

Physics
1 answer:
Alexxx [7]3 years ago
4 0

Answer:

1. Wavelength = 3.2 m

2. Amplitude = 0.6 m

Explanation:

1. Determination of the wavelength.

The wavelength of a wave is defined as the distance between two successive crest. This implies that for every complete vibration, there is one wavelength.

From the diagram given above, we can see that the wave makes 2½ vibrations.

This means that there are 2½ equal wavelength of the wave. Therefore, the wavelength can be obtained as follow:

Length (L) = 8 m

Wavelength (λ) =?

2½ λ = L

5/2 λ = 8

5λ / 2 = 8

Cross multiply

5λ = 2 × 8

5λ = 16

Divide both side by 5

λ = 16 / 5

λ = 3.2 m

Therefore, wavelength of the wave is 3.2 m.

2. Determination of the amplitude.

The amplitude of a wave is defined as the maximum displacement of the wave from the origin.

From the diagram given above, the distance between the maximum and minimum displacement is given as 1.2 m. Thus, we can obtain the amplitude of wave as follow:

Distance between the maximum and minimum displacement (D) = 1.2

Amplitude (A) =?

A = ½D

A = ½ × 1.2

A = 0.6 m

Thus, the amplitude of the wave is 0.6 m

You might be interested in
Near the top of the Citigroup Center building in New York City, there is an object with mass of 4.8 x 105 kg on springs that hav
Vikki [24]

Answer:

The force constant is  k =1.316 *10^{7} \  N/m

The energy stored in the spring is  E =  1.68 *10^{7} \ J

Explanation:

From the question we are told that

   The mass of the object is  M  = 4.8*10^{5} \ kg

    The period is T  = 1.2 \ s

The period of the spring oscillation is  mathematically represented as

         T  =2 \pi \sqrt{ \frac{M}{k}}

where  k is the force constant

   So making k the subject

       k = \frac{4 \pi ^2 M }{T^2}

substituting values

       k = \frac{4 (3.142) ^2 (4.8 *10^{5}) }{(1.2)^2}

      k =1.316 *10^{7} \  N/m

The energy stored in the spring is mathematically represented  as

       E =  \frac{1}{2} k x^2

Where x is the spring displacement which is given as

        x =  1.6 \ m

substituting values

      E =  \frac{1}{2} (1.316 *10^{7}) (1.6)^2

       E =  1.68 *10^{7} \ J

   

7 0
3 years ago
a car whose initial speed is 30 seconds m / s slows uniformly to a stop in 5.00 seconds what was the cars displacement ​
CaHeK987 [17]

Answer:

60

Explanation:

4 0
3 years ago
A velocity selector in a mass spectrometer uses a 0.150 T magnetic field. (a) What electric field strength (in volts per meter)
Alekssandra [29.7K]

Answer:

The electric field strength is 6.6\times10^{5}\ V/m

Explanation:

Given that,

Magnetic field = 0.150 T

Speed v= 4.40\times10^{6}\ m/s

We need to calculate the electric field strength

Using formula of velocity

v=\dfrac{E}{B}

E=v\times B

Where, v = speed

B = magnetic field

Put the value into the formula

E=4.40\times10^{6}\times0.150

E=660000\ V/m

E=6.6\times10^{5}\ V/m

Hence, The electric field strength is 6.6\times10^{5}\ V/m

4 0
3 years ago
A penny rides on top of a piston as it undergoes vertical simple harmonic motion with an amplitude of 4.0cm. If the frequency is
aniked [119]

1) At the moment of being at the top, the piston will not only tend to push the penny up but will also descend at a faster rate at which the penny can reach in 'free fall', in that short distance. Therefore, at the highest point, the penny will lose contact with the piston. Therefore the correct answer is C.

2) To solve this problem we will apply the equations related to the simple harmonic movement, hence we have that the acceleration can be defined as

a = -\omega^2 A

Where,

a = Acceleration

A = Amplitude

\omega= Angular velocity

From a reference system in which the downward acceleration is negative due to the force of gravity we will have to

a = -g

-\omega^2 A = -g

\omega = \sqrt{\frac{g}{A}}

From the definition of frequency and angular velocity we have to

\omega = 2\pi f

f = \frac{1}{2\pi} \sqrt{\frac{g}{A}}

f = \frac{1}{2\pi} \sqrt{\frac{9.8}{4*10^{-2}}}

f = 2.5Hz

Therefore the maximum frequency for which the penny just barely remains in place for the full cycle is 2.5Hz

6 0
3 years ago
Consider an object rolling off of your lab bench. Discuss how you might be able to make measure- ments to determine its initial
guapka [62]

Answer:

measure the position every so often with a stopwatch

Explanation:

A possible method of measurement is to place a measuring tape along the path and measure the position every so often with a stopwatch, with this we can make a graph of position against time and by extrapolation find the initial velocity.

This is a method used in measurements of uniform movements of bodies

7 0
3 years ago
Other questions:
  • What has westpac stadium in wellington got to do with the structure of a hydrogen atom
    15·1 answer
  • Calculate the kinetic energy of a .30 kg ball thrown at a velocity of 96.6 m/hr in J.
    9·1 answer
  • For parallel and series circuits with the same resistances and voltage; the series circuit has a smaller total current. True or
    11·1 answer
  • What golf skill should you be working on as a beginner golfer ?
    5·2 answers
  • Which type of nuclear decay emits two protons and two neutrons?
    10·1 answer
  • A box weighs 2000N and is accelerated uniformly over a horizontal surface at a rate of 8 m/s^2. The opposing force of friction b
    14·1 answer
  • What is the wavelength of a wave with a frequency of 330 Hz and a speed of
    12·1 answer
  • An object having mass m is attached to a spring of force constant k oscillates with simple harmonic motion. The total mechanical
    11·1 answer
  • Ouestion 1
    6·1 answer
  • How is the energy carried per photon of light related to the wavelength of the light?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!