Answer:
Answer:
see explanation and punch in the numbers yourself ( will be better for your test)
Explanation:
If you are given atoms you need to divide by Avogadro's number 6.022x10^23
then you will have moles of sulfur-- once you have moles multiply by the molar mass of sulfur to go from moles to grams
mm of sulfur is 32 g/mol
Methanol is prepared by reacting Carbon monoxide and Hydrogen gas,
CO + 2 H₂ → CH₃OH
Calculating Moles of CO:
According to equation,
32 g (1 mole) of CH₃OH is produced by = 1 Mole of CO
So,
3.60 × 10² g of CH₃OH is produced by = X Moles of CO
Solving for X,
X = (3.60 × 10² g × 1 Mole) ÷ 32 g
X = 11.25 Moles of CO
Calculating Moles of H₂:
According to equation,
32 g (1 mole) of CH₃OH is produced by = 2 Mole of H₂
So,
3.60 × 10² g of CH₃OH is produced by = X Moles of H₂
Solving for X,
X = (3.60 × 10² g × 2 Mole) ÷ 32 g
X = 22.5 Moles of H₂
Result:
3.60 × 10² g of CH₃OH is produced by reacting 11.25 Moles of CO and 22.5 Moles of H₂.
<span>Heavy metals like mercury enter waterways by industrial dumping and poor regulatioin of effluent, and they also enter soil through a similar manner, in which waste is disposed of imporperly. Another source of heavy metals are the gases leaving industry carrying these metals. The metals fall as a solid on to soil and water ways. Therefore, the answer is D.</span>
The fraction of gas phase molecules is calculated by the division of final pressure to the initial pressure.
Fraction =
(1)
Here, initial pressure = 1.0 atm
final pressure = 
First, convert torr into atm
1 atm = 760 torr
final pressure = 
= 
Now, put the value of initial and final pressure in formula (1)
Fraction =
=
Thus, fraction of the gas phase molecules =

Answer:
Dirty sand is piled on a sheet of fine mesh stretched between two long poles, the mesh collects the mircoplastic and other materials while allowing the sand to fall through.