Answer:
Acceleration is the rate of change of velocity with time.Acceleration occurs anytime an object's speed increases or decreases, or it changes direction. Much like velocity, there are two kinds of acceleration: average and instantaneous. Average acceleration is determined over a "long" time interval.
Explanation:
good luck
If l and m both are doubled then the period becomes √2*T
what is a simple pendulum?
It is the one which can be considered to be a point mass suspended from a string or rod of negligible mass.
A pendulum is a weight suspended from a pivot so that it can swing freely.
Here,
A certain frictionless simple pendulum having a length l and mass m
mass of pendulum = m
length of the pendulum = l
The period of simple pendulum is:

Where k is the constant.
Now the length and mass are doubled,
m' = 2m
l' = 2l



Hence,
If l and m both are doubled then the period becomes √2*T
Learn more about Simple Harmonic Motion here:
<u>brainly.com/question/17315536</u>
#SPJ4
To solve this problem we will apply the concepts related to the Doppler effect. The Doppler effect is the change in the perceived frequency of any wave movement when the emitter, or focus of waves, and the receiver, or observer, move relative to each other. Mathematically it can be described as,

Here,
= Frequency of Source
= Speed of sound
f = Frequency heard before slowing down
f' = Frequency heard after slowing down
v = Speed of the train before slowing down
So if the speed of the train after slowing down will be v/2, we can do a system equation of 2x2 at the two moments, then,
The first equation is,



Now the second expression will be,



Dividing the two expression we have,

Solving for v, we have,

Therefore the speed of the train before and after slowing down is 22.12m/s
Answer:
44.8 m/s
Explanation:
Use the Initial Speed Formula:
InS = 2(d/t) - Final Speed
InS = 2(55/1,25) - 43.2
InS = 2.44 - 43,2
InS = 88 - 43,2
InS = 44.8 m/s
Answer:
d. 50 C
Explanation:
In this problem, we have to add 800 ml of water at 20 Celsius to 800 ml of water at 80 Celsius.
According to the 2nd law of thermodynamics, heat transfers from hot to cold temperature.
The quantity of both the different waters is equal so this makes it very easy. All we have to do is find the mean of both the temperatures:
Final temperature = (20 C + 80 C)/2
= 50 Celsius